Bioengineering (BENG)

BENG 325     Thermofluid for Bioengineering     4 Credit Hours

This course is an introduction into mass and heat transport phenomena in biomedical systems. Basic mechanisms of fluid flow, heat transfer, and diffusion are presented and applied to biological objects (cells, tissues, organisms) and biomedical devices. Topics include mass, momentum, and energy conservation laws, physical properties of common and biological fluids, elements of fluid statics, control volume analysis, basics of fluid mechanics, conduction and convection heat transfer, diffusion, applications to hyper- and hypothermia, thermal ablation, and cryopreservation, basics of mass and heat transfer in the body.

Prerequisite(s): ENGR 216 and ME 230 and (ME 265 or ME 345)

Restriction(s):
Can enroll if Class is Sophomore or Junior or Senior
Can enroll if College is Engineering and Computer Science

BENG 351     Bio-Sensors & Instrumentation     4 Credit Hours

The course covers measurements in biological materials using a variety of sensor technologies along with electronic instrumentation design and use. Safety and FDA requirements are also presented.

Prerequisite(s): ECE 305 and (ENGR 216 or ECE 270) and MATH 216 and BIOL 103 and BIOL 140

Restriction(s):
Can enroll if Class is Junior or Senior
Can enroll if College is Engineering and Computer Science or Arts, Sciences, and Letters

BENG 364     Prob&Stat in Bioengineering     3 Credit Hours

Set theory, combinatorial analysis, probability and axioms, random variables, continuous and discrete distribution functions, expectations, Chebyshev?s inequity, weak law of large numbers, central limit theorem, sampling statistics and distributions, point and interval estimation, and linear regression.

Prerequisite(s): MATH 116 or MATH 114 or MPLS with a score of 215

Restriction(s):
Can enroll if Class is Sophomore or Junior or Senior
Can enroll if College is Engineering and Computer Science

BENG 370     Biomechanics I     4 Credit Hours

The course provides a basic understanding of how the human body functions as a mechanical system. Review of mechanics. Musculoskeletal anatomy, statics and kinematics, muscle force redundancy, joint mechanics. Bone and soft tissue mechanics, muscle active force generation. Implant stress shielding and impact safety. Laboratory experiments directed at rehabilitation engineering, biological bone and tissue property measurement, bone and implant structural analysis, and impact safety.

Prerequisite(s): (ME 265 or ME 345) and MATH 216

Restriction(s):
Can enroll if Class is Sophomore or Junior or Senior
Can enroll if College is Engineering and Computer Science or Arts, Sciences, and Letters

BENG 375     Biomaterial Tissue Engrg     4 Credit Hours

The course provides a basic understanding of the structure, properties and therapeutic applications of biomaterials, as well as the opportunities and scientific and technological challenges of tissue engineering. It also provides an integrated and multidisciplinary biological-engineering approach and probes mechanisms and methods of evaluation of tissue/biomaterials and patient/device interactions. Further the course assesses current outcomes, current challenges and cutting edge technological solutions to medical problems, Laboratory topics include key biological concepts, clinical safety, tissue culture, biological cells/bioactive materials interaction, and scaffold testing.

Prerequisite(s): ENGR 250 and BIOL 140

Restriction(s):
Can enroll if Class is Sophomore or Junior or Senior
Can enroll if Level is Undergraduate

BENG 381     Bioprocessing     4 Credit Hours

This course will introduce the students to the field of bioprocessing where the engineering concepts are applied to convert raw materials to pharmaceuticals, chemicals and food using biological processes. Discussions will include application of bioprocess-engineering knowledge in designing, building, controlling, and operating the biologically driven processes. Typical applications include bioreactor design, material collection and scale-up considerations. The course will also introduce the pharmacokinetics and pharmacodynamics analysis concepts to the students and will serve as an introductory course to teach how to use these concepts to design bioprocess-engineering systems. 4 credit hours (3 credit hours of lecture and 1 credit hour of lab).

Prerequisite(s): (ME 325 or BENG 325) and BIOL 140 and CHEM 136

Restriction(s):
Can enroll if Class is Junior or Senior
Can enroll if Level is Undergraduate
Can enroll if College is Engineering and Computer Science or Arts, Sciences, and Letters

BENG 410     Bioinformatics     3 Credit Hours

This course covers fundamental computer skills for using various bioinformatics tools, querying bioinformatics databases, computational approaches and analysis methods for biological problems, and introduction to various programming languages and toolboxes for bioinformatics, data mining, and data visualization.

Restriction(s):
Can enroll if Class is Junior or Senior
Can enroll if Level is Undergraduate
Can enroll if College is Engineering and Computer Science or Arts, Sciences, and Letters

BENG 425     Transport in Biosystems     3 Credit Hours

The course introduces transport phenomena in biological and medical systems to students already familiar with basic thermal-fluid sciences. Topics include properties of body fluids and cell membranes, blood flow and solute and oxygen transport in biological systems, basic principles of pharmacokinetic analysis, transport phenomena in medical devices and artificial organs.

Prerequisite(s): ME 375 or BENG 325

Restriction(s):
Can enroll if Class is Junior or Senior
Can enroll if College is Engineering and Computer Science or Arts, Sciences, and Letters

BENG 426     Fundamentals of Drug Delivery     3 Credit Hours

This course is designed to provide students with an understanding on the concepts in drug delivery from an engineering perspective. The course will cover drug delivery mechanisms, quantitative understanding of drug transport, nanotechnology, drug delivery devices, toxicity and immune response, FDA regulations, clinical trials and technology transfer. The course will conclude with a design project on nanoparticles development for targeted drug delivery. (F)

Prerequisite(s): BENG 325 and BIOL 140

Restriction(s):
Can enroll if Class is Junior or Senior
Can enroll if College is Engineering and Computer Science or Arts, Sciences, and Letters

BENG 451     Microfluidics     3 Credit Hours

Microscaled systems and devices have enhanced reaction rates, predictable fluidic mechanics, reduced reagent volumes, and also lowered cost of manufacturing. These advantages benefit many biomedical applications that require sensitive molecular detection in robust and economical devices. In this course, a range of microsystem techniques will be discussed, including those based on Microfluidics, BioMEMS, and Optofluidics. The lectures will meet twice a week, one hour each, and will be accompanied by student-driven design projects that will be conducted in 3-hour laboratories.

Prerequisite(s): (BENG 325 or ME 325) and (BENG 375 or BENG 381)

Restriction(s):
Can enroll if Class is Junior or Senior
Can enroll if Level is Undergraduate
Can enroll if College is Engineering and Computer Science or Arts, Sciences, and Letters

BENG 460     Nanobiosystems Engineering     3 Credit Hours

Nanobiosystems Engineering is an emerging frontier in nanotechnology. It integrates materials science, bioengineering, physics and life science with the biological and biochemical applications. This fast-developing interdisciplinary field holds the promise to solve many of the medical problems of future. The course will introduce advanced concepts related to nanomaterials and nanofabrication and their application in medicine. The course will also focus on design and development of nano-devices for the applications of pharmaceuticals and healthcare. Typical applications include nano-biosensor, targeted drug delivery, and tissue engineering will also be discussed. Students in Bioengineering will have a chance to present and discuss individual application through team project.

Prerequisite(s): (ME 325 or BENG 325) or (ME 349 or BENG 351 and BENG 375)

Restriction(s):
Can enroll if Class is Junior or Senior
Can enroll if Level is Undergraduate
Can enroll if College is Engineering and Computer Science or Arts, Sciences, and Letters

BENG 4671     Senior Design     4 Credit Hours

A guided design project course where student teams propose design projects, design a device, system or process related to bioengineering and conduct evaluative experiments and/or construct a physical prototype. Engineering ethics and responsibility. At the end of the semester, the students are required to submit written reports and give oral presentations with a demonstration of their projects

Prerequisite(s): BENG 325 and BENG 351 and BENG 370 and (BENG 375 or BENG 381) and BENG 364

Restriction(s):
Can enroll if Class is Junior or Senior
Can enroll if Major is Bioengineering

BENG 470     Biomechanics II     3 Credit Hours

The course covers intermediate level subject matter on structural biomechanics. Topics include bone structure modeling, implant and fixation materials, analysis and design, ocular biomechanics, and head impact and injury.

Prerequisite(s): BENG 370

Restriction(s):
Can enroll if Class is Junior or Senior
Can enroll if College is Engineering and Computer Science or Arts, Sciences, and Letters

BENG 475     Regenerative Eng     3 Credit Hours

This course will discuss principles of tissue engineering whereby the properties of stem as well as primary cells, growth factors, and extracellular matrix and their impact in the development of engineered tissue constructs will be explored. In addition, the course will also focus on supporting/enabling technologies typically utilized in engineering these constructs including nano- and micro-fabrication techniques, 3D printing, micro-patterning as well as designing principles of bioreactors, and drug and gene delivery techniques. Additionally, various tissue engineering applications will be discussed including synthetic tissues and organs that are currently under development for regenerative medicine application.

Prerequisite(s): BENG 370 and BENG 375

Restriction(s):
Can enroll if Class is Junior or Senior
Can enroll if Level is Undergraduate
Can enroll if College is Engineering and Computer Science

BENG 481     Biomimetics     3 Credit Hours

The Biomimetic Engineering course will give an overview and in-depth analysis of nature?s solutions to specific problems with the aim of determining appropriate engineering analogs. Students will learn mechanical principles in nature and their application to engineering devices. Mechanical behavior of biological materials as governed by underlying microstructure will be discussed. Students will work in teams on projects where they will take examples of designs, concepts and models from biology and determine their potential in specific engineering applications. 3 credit hours

Prerequisite(s): (ME 325 or BENG 325) and (BENG 370 or ME 345)

Restriction(s):
Can enroll if Class is Junior or Senior
Can enroll if Level is Undergraduate
Can enroll if College is Engineering and Computer Science or Arts, Sciences, and Letters

BENG 490     Directed Design Project     1 to 3 Credit Hours

Design project involving not only design byt alson analysis, fabrication, and/or testing. Topics may be chosen from any of the areas of bioengineering. The student will need to submit a report on his or her project at the end of the term. (F, S, W)

Restriction(s):
Can enroll if Class is Senior
Can enroll if Level is Undergraduate
Can enroll if College is Engineering and Computer Science
Can enroll if Major is Bioengineering

BENG 492     Guided Study in Bioengineering     1 to 3 Credit Hours

Individual study, design, or laboratory research in a field of interest to the student. Topics may be chosen from any areas of Bioengineering. The student needs to submit a report on his or her project at the end of the term. (F, S, W)

Restriction(s):
Can enroll if Class is Senior
Can enroll if Level is Undergraduate
Can enroll if College is Engineering and Computer Science
Can enroll if Major is Bioengineering

 
*

An asterisk denotes that a course may be taken concurrently.

Frequency of Offering

The following abbreviations are used to denote the frequency of offering: (F) fall term; (W) winter term; (S) summer term; (F, W) fall and winter terms; (YR) once a year; (AY) alternating years; (OC) offered occasionally