# Physics

Physics is the study of the most fundamental properties of matter and energy. The physics program has been designed with the recognition that a student might choose to major in physics for a variety of reasons. In addition to meeting the needs of those planning to continue their physics education in graduate school, the program serves those students wanting to pursue technical careers immediately after graduation, those seeking to enter medical, dental or other professional schools, and those interested in earning certification as high school teachers.

After completing a core curriculum in physics and mathematics and an introduction to the life and other physical sciences, students have the opportunity to gain first-hand experience in basic and applied physics research by participating in faculty research projects both on and off campus. Similar experiences may be arranged in hospital, industrial, or government research facilities in the Detroit metropolitan area. The physics faculty have concentrated their efforts in quantum optics, statistical and condensed matter physics, biophysics, astrophysics, and the history and philosophy of physics. Physics majors have worked on problems in these specialty areas, and also on projects in the interdisciplinary application of physics in medicine and in the environment. Students wishing to emphasize the applied side of physics may do so by replacing elective courses in physics with courses offered by the College of Engineering and Computer Science.

## Prerequisites to the Major

A solid background in mathematics is essential to success in any scientific discipline. Incoming students who intend a concentration in physics should have completed at least three years of high school mathematics. First-year students should plan to enroll in MATH 105, MATH 115 or MATH 116 based on the results of their math placement tests. PHYS 150 and PHYS 151 are prerequisites to all other physics courses. Students intending on majoring in physics should complete these courses as soon as possible.

Code | Title | Credit Hours |
---|---|---|

CHEM 134 | General Chemistry IA | 4 |

or CHEM 144 | Gen Chemistry IB | |

PHYS 150 | General Physics I | 4 |

PHYS 151 | General Physics II | 4 |

MATH 115 & MATH 116 & MATH 215 | Calculus I and Calculus II and Calculus III | 12 |

MATH 216 | Intro to Diff Equations | 3 |

MATH 217 | Intro to Matrix Algebra | 2-3 |

or MATH 227 | Introduction to Linear Algebra | |

Select two other science courses chosen from: | 8 | |

General Chemistry IIA | ||

or CHEM 146 | General Chemistry IIB | |

Intro Org and Environ Biology | ||

or BIOL 140 | Intro Molec & Cellular Biology | |

Physical Geology | ||

Total Credit Hours | 37-38 |

## Dearborn Discovery Core Requirement

The minimum passing grade for a Dearborn Discovery Core (DDC) course is 2.0. The minimum GPA for the program is 2.0. In addition, the DDC permits any approved course to satisfy up to three credit hours within three different categories. Please see the General Education Program: The Dearborn Discovery Core section for additional information.

### Foundational Studies

Written and Oral Communication (GEWO) – 6 Credits

Upper Level Writing Intensive (GEWI) – 3 Credits

Quantitative Thinking and Problem Solving (GEQT) – 3 Credits

Critical and Creative Thinking (GECC) – 3 Credits

### Areas of Inquiry

Natural Science (GENS) – 7 Credits

- Lecture/Lab Science Course
- Additional Science Course

Social and Behavioral Analysis (GESB) – 9 Credits

Humanities and the Arts (GEHA) – 6 Credits

Intersections (GEIN) – 6 Credits

### Capstone

## Foreign Language Requirement

Complete a two-semester beginning language sequence.

Ancient Greek I and II | MCL 105 and MCL 106 |

Arabic I and II | ARBC 101 and ARBC 102 |

Armenian I and II | MCL 111 and MCL 112 |

French I and II | FREN 101 and FREN 102 |

German I and II | GER 101 and GER 102 |

Latin I and II | LAT 101 and LAT 102 |

Spanish I and II | SPAN 101 and SPAN 102 |

## Major Requirements

Code | Title | Credit Hours |
---|---|---|

Required Courses | ||

PHYS 305 | Contemporary Physics | 3 |

PHYS 360 | Instrumentation for Scientists | 4 |

PHYS 401 | Mechanics | 3 |

PHYS 403 | Electricity and Magnetism | 3 |

PHYS 406 | Thermal and Statistical Physic | 3 |

PHYS 453 | Quantum Mechanics | 3 |

PHYS 460 | Advanced Physics Laboratory | 3 |

Select six additional credit hours of lecture courses in astronomy and/or physics, chosen from (only one can be astronomy (ASTR)): | 6 | |

Astrophysical Concepts | ||

The Cosmic Distance Scale | ||

Topics in Astronomy | ||

Stellar Astrophysics | ||

Galaxies and Cosmology | ||

Environmental Physics | ||

Intro to Mathematical Physics | ||

Current Topics in Physics | ||

Optics | ||

Biological Physics | ||

Atomic and Nuclear Physics | ||

Solid State Physics | ||

Select three additional credit hours of laboratory courses, selected from: | 3 | |

Advanced Physics Laboratory | ||

Off-Campus Research | ||

Laboratory Studies in Physics | ||

Cognates | ||

Students must complete at least six additional credit hours in upper-level cognate courses selected from ASTR, BIOL, BCHM, CHEM, ESCI, ENST, GEOL, MICR, NSCI, MATH (excluding 385, 386, 387), STAT, BENG, CIS, ECE, ENGR, IMSE, ME or other subject areas intimately related to physics and approved by the physics major advisor by petition. ^{1} | 6 | |

Total Credit Hours | 37 |

^{1} | Courses leading to knowledge of computer programming in languages such as Fortran, C++, or JAVA are particularly recommended. |

**Notes:**

- A maximum of 44 hrs. of PHYS may count in the 120 hours required to graduate.
- At least 12 of the 31 upper level hours in PHYS must be elected at UM-Dearborn.
- A maximum of 6 hrs. of independent study/research in any Dept. of Natural Sciences discipline may count towards the 120 hours required to graduate.

## Minor or BGS/LIBS Concentration

A minor or concentration consists of 12 credit hours of upper-level courses in physics.

**PHYS 100 Perspectives in Physics 3 Credit Hours**

An introductory look at the concepts and methods of physics as well as the role of physics in society today. Examines some of the problems facing physicists and the ways they go about tackling them. Problem solving includes the use of mathematics in physical situations. The course is designed for non-concentrators interested in physics. Three hours lecture. (S).

**PHYS 125 Introductory Physics I 4 Credit Hours**

Part I of a non-calculus, introductory, survey of physics. The concepts of physics are presented with an emphasis on the methods of solving physical problems. Topics are drawn from mechanics, waves, and thermal physics. This course and PHYS 126 are normally taken by students in biological science, preprofessional and computer science programs. Three hours lecture, one hour discussion, three hours laboratory. (F).

**Prerequisite(s): ** MATH 105* or MPLS with a score of 113

**Corequisite(s): ** PHYS 125L

**PHYS 126 Introductory Physics II 4 Credit Hours**

A continuation of PHYS 125. Topics are drawn from electricity and magnetism, optics, and modern physics. Three hours lecture, one hour discussion, three hours laboratory. (W).

**Prerequisite(s): ** PHYS 125 or PHYS 150

**Corequisite(s): ** PHYS 126L

**PHYS 150 General Physics I 4 Credit Hours**

Part I of an integrated, two-semester, calculus-based treatment of physics, with emphasis on the solution of physical problems through the understanding of a few basic concepts. Topics are drawn from mechanics. This course and PHYS 151 are normally taken by concentrators in physics, chemistry, biochemistry, mathematics, and engineering. Three hours lecture, one hour discussion, three hours laboratory. (F,W).

**Prerequisite(s): ** MATH 115* or MPLS with a score of 116

**Corequisite(s): ** PHYS 150L

**PHYS 151 General Physics II 4 Credit Hours**

A continuation of PHYS 150. Topics are drawn from electricity and magnetism, and optics. Three hours lecture, one hour discussion, three hours laboratory. (F,W).

**Prerequisite(s): ** PHYS 150 and (MATH 116* or MPLS with a score of 215)

**Corequisite(s): ** PHYS 151L

**PHYS 305 Contemporary Physics 3 Credit Hours**

An introduction to contemporary topics in physics of interest to science, mathematics and engineering students. Topics include relativity, and quantum mechanics and their applications to atoms, molecules, nuclei, solid state phenomena, and cosmology. Three hours lecture. (W).

**Prerequisite(s): ** (PHYS 126 or PHYS 151) and (MATH 116 or MPLS with a score of 215)

**PHYS 314 Computational Physics 3 Credit Hours**

An introduction to numerical and computational techniques in physics and astronomy. Topics include an introduction to scientific computing, fitting data to a model, visualizing results, plotting, error analysis, and writing software to solve physical problems. Applications will be selected from a variety of subfields, including: classical mechanics, statistical physics, quantum physics, electromagnetism, chaos, biophysics, and astrophysics. Three hours lecture.

**PHYS 320 Environmental Physics 3 Credit Hours**

A survey of the applications of physical principles to the environment, and to the conversion, transfer, and use of energy. Problems of transportation, meteorology, and thermal pollution are included. Three hours lecture. (OC).

**PHYS 360 Instrumentation for Scientists 4 Credit Hours**

An introduction to the principles of electronic instrumentation used in scientific research. Methods of converting physical measurements into electronic signals by means of electrical circuits, transistors, digital and analog integrated circuits will be discussed. Digital computers as general purpose laboratory instruments will be explored. Students will complete individual projects. Three hours lecture, four hours laboratory. (F).

**PHYS 370 Intro to Mathematical Physics 3 Credit Hours**

As introduction to those mathematical methods that are widely used in understanding the physical phenomena exhibited by Nature. Topics include vector analysis, linear algebra, complex variables, Fourier analysis, and differential equations. Emphasis is on the application of these techniques to physical problems of interest to students in mathematics, engineering, and the physical sciences. Three hours lecture. (AY).

**Prerequisite(s): ** (MATH 205 or MATH 215 and PHYS 151 or MPLS with a score of 215)

**PHYS 390 Current Topics in Physics 3 Credit Hours**

A lecture course in a topic of current interest in physics. Topics vary and are announced in the current Schedule of Classes. Three hours lecture. (OC).

**Prerequisite(s): ** PHYS 305*

**PHYS 401 Mechanics 3 Credit Hours**

A study of the classical physics of the motions of single particles, systems of particles, and rigid bodies. Topics include central force laws and planetary motion, collisions and scattering, rigid body motion, oscillations, Lagrange's equations, and Hamilton's principle. Three hours lecture. (F).

**Prerequisite(s): ** (MATH 205 or MATH 215 and PHYS 151 or MPLS with a score of 215)

**PHYS 403 Electricity and Magnetism 3 Credit Hours**

The study of electrostatics, magnetostatics and electrodynamics using Maxwell's equations. Of interest to engineers and physical scientists, the course focuses on the logical development of Maxwell's equations from experimental laws and on their application to electromagnetic phenomena. Three hours lecture. (W).

**Prerequisite(s): ** (MATH 205 or MATH 215 or MPLS with a score of 215) and PHYS 151

**PHYS 405 Optics 3 Credit Hours**

An introduction to wave and ray optics for students in engineering, mathematics, and the physical sciences. Topics of discussion include reflection and refraction at dielectric surfaces, lenses and mirrors, fiber optics, polarization, interference, and Fraunhofer and Fresnel diffraction. Additional material on coherence, Fourier optics and spatial filtering, and holography is presented as dictated by students' needs and interests, and as time permits. Three hours lecture. (AY).

**Prerequisite(s): ** (MATH 205 or MPLS with a score of 215 or MATH 215) and PHYS 151

**PHYS 406 Thermal and Statistical Physic 3 Credit Hours**

A study of thermodynamic phenomena using the methods of statistical mechanics. Designed for engineering students and concentrators in mathematics and the physical sciences; extensive application is made to physical, chemical and biological systems and phenomena, including solids, liquids, gases, paramagnets, thermal radiation, DNA, hemoglobin, semiconductors, heat engines, chemical reactions, and phase transitions. Three hours lecture. (F).

**Prerequisite(s): ** (MATH 205 or MATH 215 and PHYS 151 or MPLS with a score of 215)

**PHYS 416 Biological Physics 3 Credit Hours**

A course based on the methodology of physics with particular emphasis on the applications of theoretical models and experimental methods to biological objects and systems. Topics may include bioelectricity, membranes, polymers, and physical chemistry of macromolecules. Three hours lecture. (OC).

**PHYS 421 Astrophysics 3 Credit Hours**

A calculus-based introduction to several major areas of modern astrophysics for students concentrating in the physical sciences, mathematics, and engineering. Topics to be covered include observable properties of stars and star systems, stellar structure and evolution, binary systems and galactic x-ray sources, galaxies and quasars, and cosmology. Three hours lecture. (AY).

**Prerequisite(s): ** (PHYS 305 or ASTR 301 or ASTR 330) and (MATH 205 or MATH 215)

**PHYS 453 Quantum Mechanics 3 Credit Hours**

Concepts of quantum mechanics with applications of the Schrodinger wave equation to the simpler atoms, molecules, and nuclei. Topics of current interest to physicists, chemists, and biologists are discussed. Three hours lecture. (F).

**PHYS 457 Atomic and Nuclear Physics 3 Credit Hours**

Topics in modern atomic physics such as optical and radio-frequency spectroscopy and scattering of atoms and electrons are considered. An introduction to nuclear physics, including nuclear interactions and structure, radioactive decay, fission, and fusion. Three hours lecture. (AY).

**Prerequisite(s): ** (MATH 205 or MATH 215 and PHYS 305 or MPLS with a score of 215)

**PHYS 459 Advanced Physics Laboratory 2 Credit Hours**

Experimental techniques will be introduced with emphasis on modern physical measurements. Pre-developed apparatus will be available for an implementation of several standard experiments. General facilities will also be available for selected experiments designed by the students to meet individual needs. Instruction in the planning of experiments and the organization and presentation of results will be included. Eight hours laboratory. (Offered Fall Term only.)

**PHYS 460 Advanced Physics Laboratory 3 Credit Hours**

Experiments in both classical and modern physics using contemporary techniques. Commercial apparatus is used in several experiments. Advanced students are encouraged to initiate and conduct their own experiments. Instruction in the planning of experiments and the presentation of oral and written reports is included. One hour recitation, six hours laboratory. Course may be repeated for credit. (W).

**PHYS 463 Solid State Physics 3 Credit Hours**

A study of the structure and properties of the solid state of matter with emphasis on crystalline solids, crystal structures, lattice dynamics, electrons in metals and semiconductors, and dielectric and magnetic properties of solids. Three hours lecture. (AY).

**Prerequisite(s): ** (MATH 205 or MATH 215 and PHYS 305 or MPLS with a score of 215)

**PHYS 490 Topics in Physics 1 to 3 Credit Hours**

A lecture course in a topic of current interest in physics. Topics vary and are announced in the current Schedule of Classes. One to three hours lecture. (OC).

**PHYS 495 Off-Campus Research 1 to 3 Credit Hours**

Participation in ongoing experimental research at an off-campus laboratory. Assignments made by cooperative or internship agreement between the research laboratory, the student, and the physics concentration advisor. Course may be repeated for credit. Four to twelve hours laboratory. Permission of concentration advisor. (F,W,S).

**PHYS 497 Seminar in Physics 1 to 3 Credit Hours**

Current topics from various areas in pure and applied physics are reported upon by students, faculty, and guest lecturers. Topics presented will vary from year to year. Course may be repeated for credit. One to three hours seminar. (W).

**PHYS 498 Directed Studies in Physics 1 to 3 Credit Hours**

Special topics in physics chosen by agreement between student and instructor. Course may be repeated for credit. Permission of instructor. (F,W,S).

**PHYS 499 Laboratory Studies in Physics 1 to 3 Credit Hours**

Experimental studies in physics selected by agreement between student and instructor. Four to twelve hours laboratory. Course may be repeated for credit. Permission of instructor. (F,W,S).

* | An asterisk denotes that a course may be taken concurrently. |

Frequency of Offering

The following abbreviations are used to denote the frequency of offering: (F) fall term; (W) winter term; (S) summer term; (F, W) fall and winter terms; (YR) once a year; (AY) alternating years; (OC) offered occasionally