INDUSTRIAL AND SYSTEMS ENGINEERING

Industrial and systems engineering is concerned with the study and design of integrated systems of people, materials, equipment and their interaction with the surrounding environment. Historically, this field developed in the manufacturing industries where industrial engineers applied their engineering knowledge and management techniques to design and efficiently operate industrial and business systems. But the advent of the modern information technology enabled industrial engineers to apply their quantitative methods and organizational skills to a multitude of large-scale systems in addition to industrial systems. Today, industrial and systems engineers are being called upon, with increasing frequency, to design and improve the performance of systems in a wide spectrum of fields such as service, energy, transportation, finance, and health care. Thus, their scope is not limited to tackling industrial problems alone, but extends to finding solutions for the endless variety of problems of modern industrial society.

The field of study bridges engineering knowledge, management principles, physical and social sciences, and the life sciences. Simply put, it stresses the scientific and technological approach to the design, development, and the optimal operation of both large-scale and small-scale systems. The industrial and systems engineer is a versatile expert whose talents are vigorously sought, and will be for a long time to come, by various sectors of society.

Undergraduate Degree Program

The Bachelor of Science Engineering in Industrial & Systems Engineering provides first a strong basis in the foundations of engineering: natural and physical sciences, mathematics, socioeconomic-cultural background, the behavioral sciences and the basic engineering sciences which begin in the emphasis on problem solving. Then, the program develops the intermediate bases on which industrial systems and other systems engineering work is founded. This includes studies in production and operations management, lean concepts, quality engineering methods, system modeling, simulation and optimization, organization and decision theory, and human factors engineering. Contemporary operations research methods are progressively developed and applied through systems-design case studies ending with a capstone design experience.

The Bachelor of Science Engineering in Industrial and Systems Engineering is accredited by the Engineering Accreditation Commission of ABET, abet.org (http://www.abet.org)

An unusual opportunity is available to obtain considerable practical expertise in the student’s specialty for those who elect the internship option.

Students who do well in their undergraduate program are encouraged to consider graduate work and may take some of their electives in preparation for graduate study. Information and assistance regarding fellowships and assistantships for graduate study may be obtained from the department chairperson.

Industrial and Systems Engineering majors may also pursue a dual Bachelor of Science Engineering in Manufacturing Engineering and thus can earn two Bachelor of Science Engineering degrees at the same time:

- Bachelor of Science Engineering in Industrial and Systems Engineering
- Bachelor of Science Engineering in Manufacturing Engineering.

This requires a minimum of 15 credits of additional and separate courses beyond the 128 credits required for a Bachelor of Science Engineering in Industrial and Systems Engineering alone. Both degrees must be earned at the same time.

Educational Objectives of the BSE (Industrial and Systems Engineering) Program

Consistent with providing a strong academic foundation in the field of Industrial and Systems Engineering, the program educational objectives for our graduates are:

- To remain gainfully employed in Industrial and Systems Engineering related fields,
- To continue to develop professionally, and
- To serve in leadership roles.

Program Outcomes

To achieve the educational objectives, the graduates of the program will have:

1. an ability to apply knowledge of mathematics, sciences and engineering
2. an ability to design and conduct experiments, as well as to analyze and interpret data
3. an ability to design a system, component or process to meet desired needs
4. an ability to function on multidisciplinary teams
5. an ability to identify, formulate and solve engineering problems
6. an understanding of professional and ethical responsibility
7. an ability to communicate effectively
8. the broad education necessary to understand the impact of engineering solutions in a global and societal context
9. a recognition of the need for, and an ability to, engage in lifelong learning and graduate studies
10. a knowledge of contemporary issues
11. an ability to use the techniques, skills and modern engineering tools necessary for engineering practice

Dearborn Discovery Core Requirement

The minimum GPA for the program is 2.0. In addition, the DDC permits any approved course to satisfy up to three credit hours within three different categories. Please see the General Education Program: The Dearborn Discovery Core (http://catalog.umd.umich.edu/undergraduate/general-information/general-education-program-dearborn-discovery-core) section for additional information.

Foundational Studies

Written and Oral Communication (GEWO) – 6 Credits (http://catalog.umd.umich.edu/undergraduate/general-information/general-education-program-dearborn-discovery-core/#gewo)
Upper Level Writing Intensive (GEWI) – 3 Credits [URL]

Quantitative Thinking and Problem Solving (GEQT) – 3 Credits [URL]

Critical and Creative Thinking (GECC) – 3 Credits [URL]

Areas of Inquiry

Natural Science (GENS) – 7 Credits [URL]

- Lecture/Lab Science Course
- Additional Science Course

Social and Behavioral Analysis (GESB) – 9 Credits [URL]

Humans and the Arts (GEHA) – 6 Credits [URL]

Intersections (GEIN) – 6 Credits [URL]

Capstone

Capstone (GECE) – 3 Credits [URL]

Major Requirements

A candidate for the degree Bachelor of Science in Engineering (Industrial and Systems Engineering) is required to pursue scholastic quality and to complete satisfactorily the following program of study.

In addition to completion of the Dearborn Discovery Core, the following courses are required to earn a BSE degree in Industrial and Systems Engineering from UM-Dearborn.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 270</td>
<td>Tech Writing for Engineers (Also fulfills 3 credits of DDC Written and Oral Communication)</td>
<td>3</td>
</tr>
<tr>
<td>ECON 201</td>
<td>Prin: Macroeconomics (ECON 201 or 202 also fulfill 3 credits of DDC Social and Behavioral Analysis)</td>
<td>3</td>
</tr>
<tr>
<td>or ECON 202</td>
<td>Prin: Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 100</td>
<td>Intro to Eng and Computers</td>
<td>2</td>
</tr>
<tr>
<td>ENGR 126</td>
<td>Engineering Computer Graphics</td>
<td>2</td>
</tr>
<tr>
<td>MATH 115</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 116</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 215</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>MATH 228</td>
<td>Diff Eqns with Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 134/144</td>
<td>General Chemistry IA</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 136/146</td>
<td>General Chemistry IIA</td>
<td>4</td>
</tr>
<tr>
<td>or BIOL 140</td>
<td>Intro Molec & Cellular Biology</td>
<td></td>
</tr>
<tr>
<td>PHYS 150</td>
<td>General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 151</td>
<td>General Physics II</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 255</td>
<td>Computer Programming for Eng</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 250</td>
<td>Principles of Eng Materials</td>
<td>3</td>
</tr>
<tr>
<td>ME 265</td>
<td>Applied Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>or ME 260</td>
<td>Design Stress Analyses</td>
<td></td>
</tr>
<tr>
<td>ECE 305</td>
<td>Intro to Electrical Eng</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 317</td>
<td>Eng Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 382</td>
<td>Manufacturing Processes</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 421</td>
<td>Eng Economy and Dec Analys</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 440</td>
<td>Applied stat models in engin</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 4425</td>
<td>Human Factors and Ergonomics</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 4675</td>
<td>Six Sigma & Stat Proc Improv</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 4795</td>
<td>Prod, Inven Control & Lean Mfg</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 3005</td>
<td>Intro to Operations Research</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 4585</td>
<td>Simulation in Systems Design</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 4745</td>
<td>Facilities Design</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 351</td>
<td>Data Struc & Algorithm Anlysis</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 381</td>
<td>Industrial Robots</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 453</td>
<td>Data Comm/Distributed Process</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 456</td>
<td>Intro to Data Base Systems</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 4545</td>
<td>Information Systems Design</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 4815</td>
<td>Manufacturing Process II</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 4825</td>
<td>Industrial Controls</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 4835</td>
<td>Comp.-Aided Prcs Design & Mfg</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 486</td>
<td>Design for Assembly & Mfg</td>
<td>4</td>
</tr>
<tr>
<td>LE 452</td>
<td>The Legal Environment of Bus</td>
<td>4</td>
</tr>
<tr>
<td>MKT 352</td>
<td>Mktn Principles and Policies</td>
<td>4</td>
</tr>
<tr>
<td>OB 354</td>
<td>Behavior in Organization</td>
<td>4</td>
</tr>
<tr>
<td>OB 401</td>
<td>Management Skills Development</td>
<td>4</td>
</tr>
<tr>
<td>OB 402</td>
<td>Organizational Change & Devlp</td>
<td>4</td>
</tr>
<tr>
<td>ACC 298</td>
<td>Financial Accounting</td>
<td>4</td>
</tr>
<tr>
<td>ACC 299</td>
<td>Managerial Accounting</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 360</td>
<td>Des Inovtn: Proc, Meth & Prct</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 399</td>
<td>Experional Honors Prof. Prac</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 492</td>
<td>Exper Honors Directed Research</td>
<td>4</td>
</tr>
<tr>
<td>ENT 400</td>
<td>Entrepreneurial Thinking&Behav</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 351</td>
<td>Data Struc & Algorithm Anlysis</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 381</td>
<td>Industrial Robots</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 453</td>
<td>Data Comm/Distributed Process</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 456</td>
<td>Intro to Data Base Systems</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 4545</td>
<td>Information Systems Design</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 4815</td>
<td>Manufacturing Process II</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 4825</td>
<td>Industrial Controls</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 4835</td>
<td>Comp.-Aided Prcs Design & Mfg</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 486</td>
<td>Design for Assembly & Mfg</td>
<td>4</td>
</tr>
<tr>
<td>LE 452</td>
<td>The Legal Environment of Bus</td>
<td>4</td>
</tr>
<tr>
<td>MKT 352</td>
<td>Mktn Principles and Policies</td>
<td>4</td>
</tr>
<tr>
<td>OB 354</td>
<td>Behavior in Organization</td>
<td>4</td>
</tr>
<tr>
<td>OB 401</td>
<td>Management Skills Development</td>
<td>4</td>
</tr>
<tr>
<td>OB 402</td>
<td>Organizational Change & Devlp</td>
<td>4</td>
</tr>
</tbody>
</table>

Free Electives

Select 3-4 hours

Focus Area Electives and Free Electives must total minimum of 16 credits
Dual Degree in Manufacturing Engineering

Please see the requirements for the BSE, Industrial and Systems Engineering/Manufacturing Engineering in the Dual Degrees section of this catalog.

IMSE 255 Computer Programming for Eng 3 Credit Hours
Intermediate topics in computer programming; arrays, files, structured data types, pointers, functions. Overview of digital computer hardware and system software components: machine architecture, operating systems, computer networks, data security, and performance evaluation.
Prerequisite(s): ENGR 100 or MATH 105 or Mathematics Placement with a score of 113

IMSE 299 Internship/Co-Op 1 Credit Hour
This is a Cooperative Education course. Students wishing to experience a work environment before graduation may elect to participate in the Cooperative Education Program (minimum of two terms). (F,W,S).
Restriction(s):
Can enroll if Class is Junior or Senior or Graduate

IMSE 3005 Intro to Operations Research 4 Credit Hours
This course introduces some basic techniques or operations research used in decision making and system performance evaluation in both deterministic and probabilistic environments. Topics in linear programming, especially the simplex method with duality theory and sensitivity analysis is included. Other topics include integer programming, deterministic dynamic programming, network problems, PERT-CPM, discrete-time and continuous-time Markov chain models of random processes, queuing theory and applications. (YR)
Prerequisite(s): (MATH 217 or MATH 227) and IMSE 317*

IMSE 317 Eng Probability and Statistics 3 Credit Hours
Set theory, combinatorial analysis, probability and axioms, random variables, continuous and discrete distribution functions, expectations, Chebyshev's inequality, weak law of large numbers, central limit theorem, sampling statistics and distributions, point and interval estimation and linear regression. Three hours lecture.
Prerequisite(s): MATH 116 or Mathematics Placement with a score of 215 or MATH 114

IMSE 334 Org of Hospital Systems 3 Credit Hours
The fundamental concepts of organizational behavior are explored. The interrelationships among personnel in an organization, and the functions and responsibilities of individuals are discussed. Topics studied include decision-making theory, organizational authority and adjunct responsibility, leadership and supervision. Particular emphasis is placed upon hospitals and the health care industry. Lectures are supplemented with actual case studies from the health care industry in which the student has the opportunity to apply problem-solving techniques to true-to-life situations. Three hours lecture.
Restriction(s):
Can enroll if Class is Junior or Senior or Graduate

IMSE 350 Data Structures 4 Credit Hours
This course focuses on data design and algorithm designs. Data design topics include object-oriented discussions of hashing, advanced tree structures, graphs and sets. Algorithm design topics include the greedy, divide-and-conquer, dynamic programming, backtracking, and branch-and-bound techniques. A significant discussion of algorithm complexity theory, including time and space trade-off and elementary computability theory is included.
Prerequisite(s): MATH 115 and (CIS 200 or IMSE 200) and CIS 275

IMSE 351 Data Struc & Algorithm Anlysis 3 Credit Hours
Object-oriented design, programming, and analysis techniques review; structured programming concepts; data structures; algorithm design and analysis; lists, stacks, and queues; heaps, sorting, trees, graphs, and algorithm development utilizing modern languages, such as C++, Java.
Prerequisite(s): IMSE 255 or CIS 150 or IMSE 150 or CCM 150

IMSE 352 Intro to File Processing 3 Credit Hours
File processing environment, storage media, sequential, random and indexed sequential files, inverted lists, multilists, tree structures, file control systems. Three hours lecture.
Prerequisite(s): IMSE 200 and CIS 175

IMSE 356 Real Time Computing 3 Credit Hours
Introduction to real time computing concepts applicable to discrete systems. Fundamentals of real time hardware, operating systems and C programming language. Selected coverage of instrumentation, input/output modes, data conversion, single task and multitask programming. Two hours of lecture and three hours of laboratory per week.
Prerequisite(s): IMSE 150 or IMSE 255

IMSE 381 Industrial Robots 4 Credit Hours
The course introduces students in engineering and computer science to fundamentals of robotics technology, programming and their applications in industrial environment. The emphasis will be on robotics anatomy and configurations, robotics kinematics, end effectors, use of sensors in robotics, robotics programming, design of robot workcell, robotics applications to production problems, cost justifications and robotics safety, rather than on the extensive theory of robotics. Three-hour lecture and three-hour laboratory per week.
Prerequisite(s): MATH 115
Restriction(s):
Can enroll if Class is Junior or Senior

IMSE 382 Manufacturing Processes 4 Credit Hours
This course introduces the students to the fundamentals and principles of manufacturing processes for engineering materials. It seeks to transfer an understanding of the application of principles of engineering materials and their influence on manufacturing processes. Topics covered include structure and manufacturing properties of metals, casting, heat treatments, bulk deformation processes, sheet metal working processes, processing of polymers and composites, surfaces and coating, powder metallurgy, machining and joining. Case studies of design for manufacturing and measurement of product quality; economical aspects and cost considerations in manufacturing systems will be studied. Three lecture hours and three laboratory hours.
Prerequisite(s): ENGR 250 and (ME 265 or ME 260)
Corequisite(s): IMSE 382L

IMSE 390 Selected Topics I 3 Credit Hours
Study of topics selected from any of the areas of Industrial and Systems Engineering. May include design or laboratory research.

IMSE 391 Selected Topics II 3 Credit Hours
Study of Advanced topics selected from any of the areas of Industrial and Systems Engineering. May include design or laboratory research.

IMSE 398 Independent Study in IMSE 1 to 3 Credit Hours
Individual study design or laboratory in an area of interest to the student. Contents may be chosen from any of the areas of Industrial and Manufacturing Engineering. The student will submit a report on his or her project at the end of the term. Written permission of the instructor required. (F,W,S).
Restriction(s):
Cannot enroll if Class is Freshman or Sophomore or Graduate
Can enroll if College is Engineering and Computer Science
IMSE 399 Internship/ Co-Op 1 Credit Hour
A four-month professional work experience period of the Engineering Internship Program, integrated and alternated with the classroom terms.
Restriction(s):
Can enroll if Class is Junior or Senior or Graduate

IMSE 400 Programming Languages 4 Credit Hours
Systematic study of programming languages with regard to their implementation, structures, and use. Languages are compared with regard to their various data types, data structures, operations, control structures, programming environments, and ease of use in solving various programming problems.
Prerequisite(s): IMSE 350 or CIS 350 or CCM 350
Restriction(s):
Can enroll if Level is Undergraduate

IMSE 421 Eng Economy and Dec Anlys 3 Credit Hours
Study of the concepts involved in the analysis of engineering management decisions, both short and long term. Time valued investments and the effects of depreciation and taxes in comparing alternatives are discussed. Specific attention is devoted to deterministic and probabilistic replacement policies for single and chain replacements of equipment. Basic elements of utility theory are introduced. Applications of decisions under risk, uncertainty, and of game theory to capital investment, bidding, and to competitive decisions are included.
Restriction(s):
Can enroll if Class is Junior or Senior or Graduate

IMSE 437 Health Care Management 3 Credit Hours
This course is intended for those who have to deal with the administrative aspects of health care systems and not only the technical. The goal of the course is to provide the hospital staff member with an understanding of operations of the total hospital system. Topics covered include functions, problems, and organization of the medical agencies and their effect upon hospitals; methods of nursing staff organization; techniques of determining nursing staff levels; development of staff schedules; financial reimbursement and governmental regulations.
Restriction(s):
Can enroll if Class is Junior or Senior or Graduate

IMSE 440 Applied stat models in engin 3 Credit Hours
Full Course Title: Applied statistical models in engineering The course provides students with considerable experience to flexibly work with Linear Regression Models and Design of Experiments. With the growth of automated systems, data analysis became an essential tool in engineering. The first part of the course introduces students to Simple Linear Models, Multiple Linear Models, Model Evaluation, Model Diagnosis, Analysis of Variance, Residual Analysis, and Model Selection. The second part of the course introduces students to Design of Experiments and commonly used designs such as the Completely Randomized Design, Randomized Complete Block Design, and Latin Squares Design. The course also provides the students with experience handling data for engineering applications via in-class activities and assignments. Student teams complete a major data analysis project to answer a set of engineering questions and challenges. (YR)
Prerequisite(s): IMSE 317 or BENG 364 or ME 364
Restriction(s):
Can enroll if College is Engineering and Computer Science

IMSE 4425 Human Factors and Ergonomics 4 Credit Hours
The course integrates the elements of traditional methods of engineering and time-motion studies with ergonomics and human factors concepts. Methods improvement, work measurement, and work design, applied to manufacturing and service industries, so as to increase productivity and improve worker health and safety. The topics covered include: problem solving tools; operation analysis; time-motion analysis; work sampling; manual and cognitive work design; workplace, equipment, tool and work environment design; allowances; and lean manufacturing. Lectures and laboratory. (YR)
Prerequisite(s): IMSE 317 or BENG 364
Restriction(s):
Can enroll if Level is Undergraduate

IMSE 450 Operating Systems 4 Credit Hours
Introduction to computer operating systems. Process management, CPU scheduling, memory management, file systems and I/O devices. Advanced topics, e.g., multiprogramming and multitasking, virtual memory, deadlock, I/O, job scheduling, and performance analysis using queueing models, will be introduced. Case studies of modern operating systems. A design project is required.
Prerequisite(s): (CIS 350 or CIS 3501 or IMSE 350) or (ECE 370 and MATH 276) or (ECE 276 and ECE 370) and IMSE 317

IMSE 451 Computer Graphics 3 Credit Hours
The mathematics, algorithms and data structures of computer graphics programming in 2 or 3 dimensions. Applications of computer graphics in Engineering Science and Data Processing.
Prerequisite(s): IMSE 351 or CIS 351 or CIS 350 or IMSE 350 or CCM 350

IMSE 453 Data Comm/Distributed Process 4 Credit Hours
Study of the technical and management aspects of computing networks and distributed systems. Topics include network architectures (ISO/OSI, TCP/IP, ATM), communication hardware (transmission media, network adapters, switches), encoding, framing, error detection and correction, reliable transmission, data link control and LAN technology, internetworking, routing/congestion control, network design/management.
Prerequisite(s): CIS 350 or CIS 3501 or IMSE 350 or IMSE 350 or ECE 370 and MATH 276 or ECE 370 and ECE 276 or IMSE 317

IMSE 4545 Information Systems Design 4 Credit Hours
Role of information systems in organizations. Economic factors and social impact of information systems. Phases to design an information system: systems objectives and criteria establishment, fact investigation and analysis, feasibility study, output-input design, processing design, file and database design, safety and reliability considerations, detailed systems description, programming specifications, testing analysis and design skills will be assigned. A series of cases will be used in developing an information system. SQL will be used to develop data tables and access information. Three lecture hours and one three-hour laboratory. (W)
Prerequisite(s): IMSE 255 or CIS 205
Restriction(s):
Can enroll if Level is Undergraduate

IMSE 456 Intro to Data Base Systems 4 Credit Hours
An introduction to database system concepts and techniques. Topics covered include database environments, ER modeling, relational data model, object-oriented database, object-relational database, database design theory and methodologies, database languages, query processing and optimization, concurrency control, database recovery, and database security.
Prerequisite(s): CIS 350 or CIS 350A or IMSE 351 or (ECE 370 and MATH 276)
IMSE 457 Compiler Design 3 Credit Hours
The design and construction of compilers and programming systems. Lexical scan; parsing techniques; code generation and optimization. Runtime organization; storage allocation. Applications of formal language theory in compiler design. Translator writing systems; XPL. Three one-hour lectures.
Prerequisite(s): IMSE 350 or CIS 350 or CCM 350

IMSE 4585 Simulation in Systems Design 4 Credit Hours
This course introduces digital simulation as a design and modeling tool. The fundamental techniques of constructing a paired model and evaluating the results are studied. A computer simulation software is used (such as ARENA, ProModel, Witness, Simul8). Topics include random number and random variate generation, input and output data analysis, design of experiments and optimization of simulated systems, verification and validation, discrete and continuous simulation models, comparison of simulation modeling software, and applications of simulation in different industries. Students are asked to select problems of interest and present final project reports. Four lecture hours. (YR)
Prerequisite(s): IMSE 317 and IMSE 3005*
Restriction(s):
Can enroll if Level is Undergraduate

IMSE 4675 Six Sigma & Stat Proc Improv 4 Credit Hours
Review of graphical methods, probability theory and statistics (stem- and-leaf plots, histograms, scatter diagrams, counting methods, axioms of probability, common discrete and continuous probability models, expectation, linear combinations, estimation, sampling distributions, confidence intervals, hypothesis testing, and A vs. B type of experimentation for both unpaired and paired data); introduce quality terminology in manufacturing and service industry contexts, study the theory, design and application of common statistical process control models for variables and attributes; study process capability and gauge and measurement capability methods; study the design and analysis, both graphical and analytic, of statistically designed experiments (one-way completely randomized designs, and randomized, complete block designs); study the application and analysis of two-level, factorial and fractional factorial designs. Learn to apply and interpret analysis of variance to above situations. Extensive analytic homework and applications used throughout course to motivate material. Each student completes an individual project of his/her own design, subject to instructor approval, entailing a modeling application or controlled experiment where the student collects the data. Four hours lecture. (YR)
Prerequisite(s): IMSE 317
Restriction(s):
Can enroll if Level is Undergraduate

IMSE 4745 Facilities Design 4 Credit Hours
Analysis, planning and design of physical facilities utilizing research, engineering and economic principles. Synthesis of physical equipment and workers into an integrated system for either service or manufacturing activities. Design of material handling and storage systems. Layout of lean manufacturing facilities. Design of atmospheric, electrical, lighting, and life safety systems for a facility. Students are required to select problems of interest and present design project reports. (F)
Prerequisite(s): IMSE 3005*
Restriction(s):
Can enroll if Level is Undergraduate

IMSE 4795 Prod, Inven Control & Lean Mfg 4 Credit Hours
Study of concepts involved in forecasting demand, inventory control, MRP, JIT production, lean manufacturing, aggregate scheduling, and project management. The application of mathematical programming techniques, bottleneck analysis, and lean techniques such as value stream mapping, error proofing, cellular manufacturing, etc. are used in design and analysis of production systems. Use of the computer programs in the design and analysis of such systems. Students are asked to select problems of interest and present final project reports. (OC)
Prerequisite(s): IMSE 317
Restriction(s):
Can enroll if Level is Undergraduate

IMSE 4815 Manufacturing Process II 4 Credit Hours
This course introduces the students to machining processes, metal forming processes and molding and forming of plastics. Metal cutting theory is emphasized including the mechanics of metal cutting, cutting tools, measurement of tool life, selection of cutting conditions, and chip control, theory and applications of non-traditional manufacturing processes. Metal forming theory is emphasized including formability of metals; analysis of bulk and sheet metal forming processes as applied to practical cases such as automobile manufacturing. Basic principles of plastic molding and forming processes of plastics, ceramics and composites. (W)
Prerequisite(s): IMSE 382 or ME 381
Corequisite(s): IMSE 4675
Restriction(s):
Can enroll if Level is Undergraduate

IMSE 4825 Industrial Controls 4 Credit Hours
This course introduces the basics of calibration, error analysis, and dynamic response characteristics of instrumentation. Fundamentals of metrology include linear and angular measurements, standards, gauges, machine tool accuracy, and automation of inspection processes. The course also introduces the principle aspects of computers and their applications in system control, as well as principles of automation with emphasis on manufacturing industries. Discussion of the hardware and software associated with this task and other topics such as integrated systems modeling, sensor technologies, digital and analog signal processing and control, and information communication are also included. Laboratory exercises and projects are required. (F)
Prerequisite(s): ME 265
Corequisite(s): ECE 305
Restriction(s):
Can enroll if Level is Undergraduate
Can enroll if College is Engineering and Computer Science

IMSE 4835 Comp.-Aided Pracs Design & Mfg 4 Credit Hours
This course focuses on the fundamentals of component and system designs through the use of Computer-Aided Design (CAD) tools. Issues related to the manufacture of molds, jigs and fixtures are also introduced and Computer-Aided Manufacturing (CAM) tools are used as means for the production of these machine components. The principles of design for manufacture and assembly as applied to tool and machine design are also discussed. Computer-Aided Process Planning (CAPP) tools, flexible manufacturing systems, and information flow in manufacturing systems are also presented. Hands-on experiments and course projects are required. (W)
Prerequisite(s): IMSE 382 or ME 381
Restriction(s):
Can enroll if Class is Senior
Can enroll if Level is Undergraduate
IMSE 484 CA Machine and Tool Design 3 Credit Hours
Study of the fundamentals of machine tool design, cutting tools, metal forming dies, and jig fixtures for practical applications in machining and assembly. Principles of design for manufacture and assembly as applied to tool and machine design. Laboratory exercises and projects are required using computer-aided design software. Two lecture hours and three laboratory hours.
Prerequisite(s): IMSE 382 or ME 381
Restriction(s):
Can enroll if Level is Undergraduate

IMSE 486 Design for Assembly & Mfg 3 Credit Hours
This course will cover topics in manufacturing with emphasis on the parallel product design and selection of specifications for processes. Topics included are the principles of concurrent engineering, geometric dimensioning and tolerancing (GD&T), process engineering, process planning, cost estimating, and design for manufacturing. Projects using computer tools are required on a team-oriented basis.
Prerequisite(s): IMSE 382
Restriction(s):
Can enroll if Level is Undergraduate

IMSE 488 Metal Forming Processes 3 Credit Hours
This course focuses on fundamentals of metal forming processes; mechanics of metal forming; formability of materials; tool and die design; design for manufacture; and economic aspects of the process. Emphasis is placed on analysis of bulk and sheet metal forming processes as applied to practical cases such as automobile manufacturing. Laboratory and course project are required.
Prerequisite(s): IMSE 382
Restriction(s):
Can enroll if Level is Undergraduate

IMSE 489 Robotics Systems Simulation 3 Credit Hours
The course emphasizes the fundamentals of the design of robotic systems with the aid of robot simulation technology; structure and basic components of robots and robotics manufacturing workcells; control, kinematics, and dynamics of robots and manufacturing devices; robot accuracy and calibration of robot motion; applications of robots in manufacturing such as spot welding, arc welding, machining, assembly and CMM; robot simulation software such as ROBCAD or IGRIP. Course project is required. Available for graduate credit. (YR)
Restriction(s):
Can enroll if Class is Senior or Graduate

IMSE 490 Selected Topics 3 Credit Hours
Individual or group study, design or laboratory research in a field of interest to the student. Topics may be chosen from any of the areas of industrial and systems engineering including management, work measurement, methods, organization, industrial sciences, industrial mathematics, systems and procedures. If preliminary arrangements are made, the work internship periods can be used to formulate the problem and gather data. Completion of the analysis and submission of a report shall be done during the academic periods under the supervision of a faculty member or members. The student should be prepared for both written and oral presentation of the report. This course is highly recommended as a technical elective. Permission of department.

IMSE 491 Directed Studies in IMSE 1 to 3 Credit Hours
Group study of contemporary topics in industrial and systems engineering and general systems design. Course may be elected for credit more than once under different instructors. Permission of department.

IMSE 4951 Design Project I 2 Credit Hours
Design of a system to produce or service using knowledge gained in previous courses in the program. Two two-hour lecture/lab periods. (F,W,S)
Prerequisite(s): ENGR 400* and (COMP 270* or COMP 106* or COMP 220*)
Restriction(s):
Can enroll if Class is Senior
Can enroll if Level is Undergraduate
Can enroll if College is Engineering and Computer Science
Can enroll if Major is Manufacturing Engineering, Industrial & Systems Engin

IMSE 4952 Design Project II 2 Credit Hours
Design of a system to produce or service using the knowledge gained in previous courses in the program. It is the continuation of the project started in Design Project I course. (F,W,S)
Prerequisite(s): IMSE 4951
Restriction(s):
Can enroll if Class is Senior
Can enroll if Level is Undergraduate
Can enroll if College is Engineering and Computer Science
Can enroll if Major is Manufacturing Engineering, Industrial & Systems Engin

IMSE 4953 Design Project in Mfge 1 Credit Hour
Design of a manufacturing system to produce product using the knowledge gained in previous courses in the program. (F,W,S)
Prerequisite(s): ENGR 400*
Corequisite(s): ME 4671
Restriction(s):
Can enroll if Class is Senior
Can enroll if Level is Undergraduate
Can enroll if College is Engineering and Computer Science
Can enroll if Major is Manufacturing Engineering, Mechanical Engineering

IMSE 498 Guided Study in IMSE 1 to 3 Credit Hours
Individual study, design, or laboratory research in a field of interest to the student. Content may be chosen from any of the areas on industrial and manufacturing engineering. The student will submit a report on his or her project at the close of the term. Permission of department. (F,W,S)
Restriction(s):
Cannot enroll if Class is Freshman or Sophomore
Can enroll if Level is Undergraduate
Can enroll if College is Engineering and Computer Science

IMSE 499 Internship/ Co-Op 1 Credit Hour
A four-month professional work experience period of the Engineering Internship Program, integrated and alternated with classroom terms.
Restriction(s):
Can enroll if Class is Senior
Can enroll if Level is Undergraduate

* An asterisk denotes that a course may be taken concurrently.

Frequency of Offering

The following abbreviations are used to denote the frequency of offering: (F) fall term; (W) winter term; (S) summer term; (F, W) fall and winter terms; (YR) once a year; (AY) alternating years; (OC) offered occasionally.