Bioengineering is an emerging branch of engineering that primarily deals with problems of medicine, healthcare, and—in genera—quality of human life. It is a multidisciplinary field that combines scientific principles of biology, chemistry, physics, and mathematics with the best engineering techniques developed in traditional areas (for example, mechanical, electrical, chemical, and computer engineering) and new breakthrough methods developed in recent years. Activities of bioengineers are widely spread. They use their knowledge to design and build medical instruments, artificial organs, prosthetic limbs, therapeutic devices, and medical imaging equipment. They help doctors to design new medical procedures, including new rehabilitation techniques. They also assist pharmaceutical and biotechnology industries in developing new, more efficient bioprocessing technologies. Finally, they find solutions for medical and biology-related problems of consumer technology in the areas of safety, ergonomics, and comfort.

Bioengineering is a rapidly growing profession with expanding career opportunities. By virtue of their vigorous cross-training, bioengineers are well-poised for careers in healthcare, medical device production, pharmaceutical industries, and consulting in health-related fields, as well as other positions in industry, education, and government.

Undergraduate Degree Program

The undergraduate program in bioengineering provides first a strong foundation in all of the basic ingredients of engineering: the natural and physical sciences, mathematics, a comprehensive socio-economic-cultural background, the behavioral sciences, and finally the basic engineering sciences that begin the development of problem-solving skills.

The program integrates natural sciences with engineering analysis and design concepts to advance the fundamental understanding of biological systems and to develop biology-based technologies with applications across a wide spectrum of societal needs. The bioengineering curriculum is designed to cater to students looking to enter the professional world immediately after earning their undergraduate degree, as well as those who are interested in pursuing graduate studies and research. Various fundamental, design, and application oriented courses (e.g. Biomaterials, Biomechanics, Bioinstrumentation, Biotransport, and Bioprocesses) fulfill industrial needs and help students to perform well in biotech, pharmaceutical, and healthcare industries as engineering professionals. At the same time, the exposure to advanced courses and cross-cutting, state-of-the-art research experiences provide a solid foundation to continue graduate studies and emerge as leaders in science and engineering.

Bioengineering 4+1 Option

The accelerated undergraduate/master’s studies option in bioengineering (4+1 option) allows the most qualified UM-Dearborn undergraduate bioengineering students to pursue a program of study in which BSE and MSE degrees are earned in a five-year accelerated format. This is achieved via combining a portion of undergraduate and graduate coursework. Admitted 4+1 students can double-count up to 9 credits of 500-level or above bioengineering elective, core, or cognate courses taken during their junior or senior years. Of these, only one cognate course is allowed. In practice with the usual graduate student program rules, 4+1 students may also transfer a maximum of 6 additional 500 level credits toward the 30-credit master’s degree. These additional transfer credits can be taken during the junior and senior years and cannot be used for any portion of the undergraduate degree. Depending on the number of double-counted and transfer credits, 15-21 credits of graduate coursework would be needed to complete the master’s program after completion of the undergraduate degree.

Please see the Bioengineering 4+1 Option (https://umdearborn.edu/cecs/departments/mechanical-engineering/undergraduate-programs/41-bioengineering-program/) webpage for more information.

The Bachelor of Science in Engineering in Bioengineering program is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org (https://www.abet.org/)

Program Educational Objectives

The Program Educational Objectives for the Bachelor of Science in Engineering in Bioengineering are:

- Be successfully employed in their discipline or a closely related field, while contributing to the economy and healthcare
- Continue to enhance their knowledge base and skills, through graduate degrees or other professional developments, to keep abreast of the ongoing changes in technology and health-related disciplines
- Be well rounded and well suited to work with colleagues and professionals with diverse technical backgrounds, cultures and wide range of competencies including those related to healthcare

Program Outcomes

To achieve the educational objectives, the graduates of the program will have:

1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
3. An ability to communicate effectively with a range of audiences.
4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Dearborn Discovery Core

Please see the Dearborn Discovery Core (General Education) (https://umdearborn.edu/faculty-staff/academic-program-and-course-development/dearborn-discovery-core-general-education/) webpage or additional information.
Foundational Studies
Written and Oral Communication (GEWO) – 6 Credits
Upper-Level Writing Intensive (GEWI) – 3 Credits
Quantitative Thinking and Problem Solving (GEQT) – 3 Credits
Critical and Creative Thinking (GECC) – 3 Credits

Areas of Inquiry
Natural Science (GENS) – 7 Credits
 • Lecture/Lab Science Course
 • Additional Science Course
Social and Behavioral Analysis (GESB) – 9 Credits
Humanities and the Arts (GEHA) – 6 Credits
Intersections (GEIN) – 6 Credits

Capstone
Capstone (GECE) – 3 Credits

Major Requirements
A candidate for the degree Bachelor of Science in Engineering (Bioengineering) is required to pursue scholastic quality and to complete satisfactorily the following program of study.

In addition to completion of the Dearborn Discovery Core, the following courses are required to earn a BSE degree in Bioengineering from UM-Dearborn.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basic Preparation for Engineering</td>
<td></td>
</tr>
<tr>
<td>COMP 270</td>
<td>Tech Writing for Engineers (Also fulfills 3 credits of DDC Written and Oral Communication)</td>
<td></td>
</tr>
<tr>
<td>ECON 201</td>
<td>Prin: Macroeconomics (ECON 201 or 202 also fulfill 3 credits of DDC Social and Behavioral Analysis)</td>
<td></td>
</tr>
<tr>
<td>or ECON 202</td>
<td>Prin: Microeconomics</td>
<td></td>
</tr>
<tr>
<td>ENGR 100</td>
<td>Introduction to Engineering and Engineering Design</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 126</td>
<td>Engineering Computer Graphics</td>
<td>2</td>
</tr>
<tr>
<td>MATH 115</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 116</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 215</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>MATH 228</td>
<td>Diff Eqns with Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 134/144</td>
<td>General Chemistry IA</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 136/146</td>
<td>General Chemistry IIA</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 103</td>
<td>Anatomy and Physiology I</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 140</td>
<td>Intro Molec & Cellular Biology</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>General Physics I, II</td>
<td></td>
</tr>
<tr>
<td>PHYS 150</td>
<td>General Physics I</td>
<td>8</td>
</tr>
<tr>
<td>PHYS 151</td>
<td>General Physics II</td>
<td></td>
</tr>
<tr>
<td>ENGR 216</td>
<td>Computer Meth for Engineers</td>
<td>2</td>
</tr>
<tr>
<td>ENGR 250</td>
<td>Principles of Eng Materials</td>
<td>3</td>
</tr>
<tr>
<td>ME 230</td>
<td>Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Professional Subjects and Program Electives</td>
<td></td>
</tr>
<tr>
<td>BENG 325</td>
<td>Thermofluid for Bioengineering</td>
<td>4</td>
</tr>
<tr>
<td>BENG 351</td>
<td>Bio-Sensors & Instrumentation</td>
<td>4</td>
</tr>
<tr>
<td>BENG 370</td>
<td>Biomechanics I</td>
<td>4</td>
</tr>
<tr>
<td>BENG 364</td>
<td>Prob&Stat in Bioengineering</td>
<td>3</td>
</tr>
<tr>
<td>BENG 375</td>
<td>Biomaterial Tissue Engr</td>
<td>4</td>
</tr>
<tr>
<td>BENG 381</td>
<td>Bioprocessing</td>
<td>4</td>
</tr>
<tr>
<td>BENG 4671</td>
<td>Senior Design</td>
<td>4</td>
</tr>
<tr>
<td>BENG 325</td>
<td>Fundamentals of Drug Delivery</td>
<td>4</td>
</tr>
<tr>
<td>BENG 451</td>
<td>Microfluidics</td>
<td>4</td>
</tr>
<tr>
<td>BENG 460</td>
<td>Nanobiosystems Engineering</td>
<td>4</td>
</tr>
<tr>
<td>BENG 470</td>
<td>Advanced Biomechanics</td>
<td>4</td>
</tr>
<tr>
<td>BENG 481</td>
<td>Biomimetics</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 4675</td>
<td>Six Sigma & Stat Proc Improv</td>
<td>4</td>
</tr>
<tr>
<td>IMSE 4425</td>
<td>Human Factors and Ergonomics</td>
<td>4</td>
</tr>
<tr>
<td>ME 3601</td>
<td>Des and Analy of Mach Elem</td>
<td>4</td>
</tr>
<tr>
<td>BENG 490</td>
<td>Directed Design Project</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 493</td>
<td>Exper Hnrs Dir Dsgn</td>
<td>4</td>
</tr>
</tbody>
</table>

Students admitted to the 4+1 Option can double-count up to 9 credits of 500-level or above bioengineering elective, core, or cognate courses taken during their junior or senior years.
BENG 325 Thermofluid for Bioengineering 4 Credit Hours
This course is an introduction into mass and heat transport phenomena in biomedical systems. Basic mechanisms of fluid flow, heat transfer, and diffusion are presented and applied to biological objects (cells, tissues, organs) and biomedical devices. Topics include mass, momentum, and energy conservation laws, physical properties of common and biological fluids, elements of fluid statics, control volume analysis, basics of fluid mechanics, conduction and convection heat transfer, diffusion, applications to hyper- and hypothermia, thermal ablation, and cryopreservation, basics of mass and heat transfer in the body.
Prerequisite(s): ENGR 216 and ME 230 and (ME 265 or ME 345)
Restriction(s):
Can enroll if Class is Sophomore or Junior or Senior
Can enroll if College is Engineering and Computer Science

BENG 351 Bio-Sensors & Instrumentation 4 Credit Hours
The course covers measurements in biological materials using a variety of sensor technologies along with electronic instrumentation design and use. Safety and FDA requirements are also presented.
Prerequisite(s): (MATH 216 or MATH 228) and BIOL 103 and BIOL 140 and ECE 305 and (ENGR 216 or ECE 270)
Restriction(s):
Can enroll if Class is Junior or Senior
Can enroll if College is Engineering and Computer Science or Arts, Sciences, and Letters

BENG 364 Prob&Stat in Bioengineering 3 Credit Hours
Set theory, combinatorial analysis, probability and axioms, random variables, continuous and discrete distribution functions, expectations, Chebyshev’s inequality, weak law of large numbers, central limit theorem, sampling statistics and distributions, point and interval estimation, and linear regression.
Prerequisite(s): MATH 116 or MATH 114 or Mathematics Placement with a score of 215
Restriction(s):
Can enroll if Class is Sophomore or Junior or Senior
Can enroll if College is Engineering and Computer Science or Arts, Sciences, and Letters

BENG 370 Biomechanics I 4 Credit Hours
The course provides a basic understanding of how the human body functions as a mechanical system. Review of mechanics. Musculoskeletal anatomy, statics and kinematics, muscle force redundancy, joint mechanics. Bone and soft tissue mechanics, muscle active force generation. Implant stress shielding and impact safety. Laboratory experiments directed at rehabilitation engineering, biological bone and tissue property measurement, bone and implant structural analysis, and impact safety.
Prerequisite(s): (ME 265 or ME 345) and (MATH 216 or MATH 228)
Restriction(s):
Can enroll if Class is Sophomore or Junior or Senior
Can enroll if College is Engineering and Computer Science or Arts, Sciences, and Letters

BENG 375 Biomaterial Tissue Engrg 4 Credit Hours
The course provides a basic understanding of the structure, properties and therapeutic applications of biomaterials, as well as the opportunities and scientific and technological challenges of tissue engineering. It also provides an integrated and multidisciplinary biological-engineering approach and probes mechanisms and methods of evaluation of tissue/biomaterials and patient/device interactions. Further the course assesses current outcomes, current challenges and cutting edge technological solutions to medical problems. Laboratory topics include key biological concepts, clinical safety, tissue culture, biological cells/bioactive materials interaction, and scaffold testing.
Prerequisite(s): ENGR 250 and BIOL 140
Restriction(s):
Can enroll if Class is Sophomore or Junior or Senior
Can enroll if Level is Undergraduate

BENG 381 Bioprocessing 4 Credit Hours
This course will introduce the students to the field of bioprocessing where the engineering concepts are applied to convert raw materials to pharmaceuticals, chemicals and food using biological processes. Discussions will include application of bioprocess-engineering knowledge in designing, building, controlling, and operating the biologically driven processes. Typical applications include bioreactor design, material collection and scale-up considerations. The course will also introduce the pharmacokinetics and pharmacodynamics analysis concepts to the students and will serve as an introductory course to teach how to use these concepts to design bioprocess-engineering systems. 4 credit hours (3 credit hours of lecture and 1 credit hour of lab).
Prerequisite(s): (ME 325 or BENG 325) and BIOL 140 and (CHEM 136 or CHEM 146)
Restriction(s):
Can enroll if Class is Junior or Senior
Can enroll if Level is Undergraduate
Can enroll if College is Engineering and Computer Science or Arts, Sciences, and Letters

BENG 410 Bioinformatics 3 Credit Hours
This course covers fundamental computer skills for using various bioinformatics tools, querying bioinformatics databases, computational approaches and analysis methods for biological problems, and introduction to various programming languages and toolboxes for bioinformatics, data mining, and data visualization.
Restriction(s):
Can enroll if Class is Junior or Senior
Can enroll if Level is Undergraduate
Can enroll if College is Engineering and Computer Science or Arts, Sciences, and Letters

BENG 425 Transport in Biosystems 3 Credit Hours
The course introduces transport phenomena in biological and medical systems to students already familiar with basic thermal-fluid sciences. Topics include properties of body fluids and cell membranes, blood flow and solute and oxygen transport in biological systems, basic principles of pharmacokinetic analysis, transport phenomena in medical devices and artificial organs.
Prerequisite(s): ME 375 or BENG 325
Restriction(s):
Can enroll if Class is Junior or Senior
Can enroll if College is Engineering and Computer Science or Arts, Sciences, and Letters
BENG 426 Fundamentals of Drug Delivery 3 Credit Hours
This course is designed to provide students with an understanding on the concepts in drug delivery from an engineering perspective. The course will cover drug delivery mechanisms, quantitative understanding of drug transport, nanotechnology, drug delivery devices, toxicity and immune response, FDA regulations, clinical trials and technology transfer. The course will conclude with a design project on nanoparticles development for targeted drug delivery. (F).
Prerequisite(s): (BENG 325 or ME 325) and BIOL 140
Restriction(s):
Can enroll if Class is Junior or Senior
Can enroll if College is Engineering and Computer Science or Arts, Sciences, and Letters

BENG 450 Biomedical Optics and Biophotonics 3 Credit Hours
Full Course Title: Biomedical Optics and Biophotonics The recent explosion of interest in minimally invasive medical diagnostics has been fueled in part by the development of novel optics and photonics techniques and instrumentation designed specifically for medical applications. A large number of optically-based imaging and sensing diagnostics are now in use in both the research laboratory and medical clinic. Topics include engineering design principles of optical instrumentation for medical diagnostics, elastic and inelastic light scattering theory and biomedical applications, confocal and multiphoton microscopy, light propagation and optical tomographic imaging in biological tissues, and design of minimally invasive spectroscopic diagnostics. (YR).
Prerequisite(s): PHYS 150 and PHYS 151
Restriction(s):
Can enroll if Class is Junior or Senior
Can enroll if Level is Undergraduate
Can enroll if Major is Bioengineering,

BENG 451 Microfluidics 3 Credit Hours
Microelectromechanical systems (MEMS) have been developed for a wide range of applications from automotive to medical devices, and microfluidics extends these technologies to biological assays. Microfluidics and bioMEMS have a particular usefulness in biological applications due to their small volumes, low energy sensing, and minimal force actuators. Novel bioMEMS and microfluidics leverage techniques in biophysics, biochemistry, solid state devices, and polymer engineering to advance device developments.
Prerequisite(s): (BENG 325 or ME 325) and (BENG 375 or BENG 381)
Restriction(s):
Can enroll if Class is Junior or Senior
Can enroll if Level is Undergraduate
Can enroll if College is Engineering and Computer Science or Arts, Sciences, and Letters

BENG 460 Nanobiosystems Engineering 3 Credit Hours
Nanobiosystems Engineering is an emerging frontier in nanotechnology. It integrates materials science, bioengineering, physics and life science with the biological and biochemical applications. This fast-developing interdisciplinary field holds the promise to solve many of the medical problems of future. The course will introduce advanced concepts related to nanomaterials and nanofabrication and their application in medicine. The course will also focus on design and development of nanodevices for the applications of pharmaceuticals and healthcare. Typical applications include nano-biosensor, targeted drug delivery, and tissue engineering will also be discussed. Students in Bioengineering will have a chance to present and discuss individual application through team project.
Prerequisite(s): (ME 325 or BENG 325) or (ME 349 or BENG 351 and BENG 375)
Restriction(s):
Can enroll if Class is Junior or Senior
Can enroll if Level is Undergraduate
Can enroll if College is Engineering and Computer Science or Arts, Sciences, and Letters

BENG 4671 Senior Design 4 Credit Hours
A guided design project course where student teams propose design projects, design a device, system or process related to bioengineering and conduct evaluative experiments and/or construct a physical prototype. Engineering ethics and responsibility. At the end of the semester, the students are required to submit written reports and give oral presentations with a demonstration of their projects.
Prerequisite(s): BENG 325 and BENG 351 and BENG 370 and (BENG 375 or BENG 381) and BENG 364
Restriction(s):
Can enroll if Class is Junior or Senior
Can enroll if Major is Bioengineering

BENG 470 Advanced Biomechanics 3 Credit Hours
The course covers intermediate level subject matter on structural biomechanics, analysis and design. Topics include: soft tissue biomechanics, human motion analysis including gait, orthopedic implants, fixation and reconstruction, head impact injury, advanced bone models. (YR).
Prerequisite(s): BENG 370
Restriction(s):
Can enroll if Class is Junior or Senior
Can enroll if College is Engineering and Computer Science or Arts, Sciences, and Letters

BENG 475 Regenerative Eng 3 Credit Hours
This course will discuss principles of tissue engineering whereby the properties of stem as well as primary cells, growth factors, and extracellular matrix and their impact in the development of engineered tissue constructs will be explored. In addition, the course will also focus on supporting/enabling technologies typically utilized in engineering these constructs including nano- and micro-fabrication techniques, 3D printing, micro-patterning as well as designing principles of bioreactors, and drug and gene delivery techniques. Additionally, various tissue engineering applications will be discussed including synthetic tissues and organs that are currently under development for regenerative medicine application.
Prerequisite(s): BENG 370 and BENG 375
Restriction(s):
Can enroll if Class is Junior or Senior
Can enroll if Level is Undergraduate
Can enroll if College is Engineering and Computer Science
BENG 481 Biomimetics 3 Credit Hours
The Biomimetic Engineering course will give an overview and in-depth analysis of nature's solutions to specific problems with the aim of determining appropriate engineering analogs. Students will learn mechanical principles in nature and their application to engineering devices. Mechanical behavior of biological materials as governed by underlying microstructure will be discussed. Students will work in teams on projects where they will take examples of designs, concepts and models from biology and determine their potential in specific engineering applications. 3 credit hours
Prerequisite(s): (ME 325 or BENG 325) and (BENG 370 or ME 345)
Restriction(s):
- Can enroll if Class is Junior or Senior
- Can enroll if Level is Undergraduate
- Can enroll if College is Engineering and Computer Science or Arts, Sciences, and Letters

BENG 490 Directed Design Project 1 to 3 Credit Hours
Design project involving not only design by analysis, fabrication, and/or testing. Topics may be chosen from any of the areas of bioengineering. The student will need to submit a report on his or her project at the end of the term. (F, S, W)
Restriction(s):
- Can enroll if Class is Senior
- Can enroll if Level is Undergraduate
- Can enroll if College is Engineering and Computer Science
- Can enroll if Major is Bioengineering

BENG 492 Guided Study in Bioengineering 1 to 3 Credit Hours
Individual study, design, or laboratory research in a field of interest to the student. Topics may be chosen from any areas of Bioengineering. The student needs to submit a report on his or her project at the end of the term. (F, S, W)
Restriction(s):
- Can enroll if Class is Senior
- Can enroll if Level is Undergraduate
- Can enroll if College is Engineering and Computer Science
- Can enroll if Major is Bioengineering

* An asterisk denotes that a course may be taken concurrently.

Frequency of Offering
The following abbreviations are used to denote the frequency of offering:
(F) fall term; (W) winter term; (S) summer term; (F, W) fall and winter terms; (YR) once a year; (AY) alternating years; (OC) offered occasionally