Specific requirements of the program are described below.

This degree program is available both on campus and via the Internet.

Admission
Admission to the program as a regular student requires a BS degree in Engineering, a physical science, computer science, or applied mathematics earned from an accredited program with an average of B or better. Each applicant will be required to present a complete transcript of prior college work. An entering student should have already completed at least one course in probability and statistics and one course in operations research. Deficiencies in prerequisites may be made up after entering the graduate school; however, credits received in courses elected to make up the deficiencies do not count toward a degree. Students who have not fulfilled the requirements of the BS in Industrial and Systems Engineering should communicate with the program advisor regarding the requirements to be met.

Two letters of recommendation are required for admission. At least one letter of recommendation must be from the applicant’s undergraduate academic institution.

Degree Requirements
The degree MSE in I&SE requires a minimum of 30 credit hours. No comprehensive final examination is required.

Minimum Grade Requirement in addition to maintaining a minimum cumulative GPA of 3.0 or higher every semester:
1. Courses in which grades of C- or below are earned cannot be used to fulfill degree requirements.
2. No more than two courses in which grades of B- or below are earned can be used to fulfill degree requirements.

A minimum of a 3.0 cumulative GPA or higher is required at the time of graduation.

Advanced Standing Provision
Up to six graduate credit hours (grade of B or better) may be transferred from another accredited institution. Students may transfer up to one-half (1/2) the minimum number of credit hours required for their master’s or professional degree from U-M/non-Rackham departments and programs (including Dearborn and Flint).

Degree Requirements
The MSE in Industrial and Systems Engineering requires a minimum of 30 credit hours.

Specific Course Requirements
The program of study must satisfy the following distribution and course requirements:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSE 511</td>
<td>Design and Analysis of Exp</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 501</td>
<td>Human Factors & Ergonomics</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 580</td>
<td>Prod & Oper Engineering I</td>
<td>3</td>
</tr>
</tbody>
</table>

Concentrations
A minimum of 12 credit hours from the three concentration areas.
All four courses can be taken from one concentration area or any combination of the three concentration areas below.

Total Credit Hours 21

Detailed Course Requirements

Industrial Systems Engineering Concentration

- **Human Factors and Ergonomics**
 - IMSE 543 Industrial Ergonomics 3
 - IMSE 545 Vehicle Ergonomics I 3
 - IMSE 546 Safety Engineering 3
 - IMSE 548 Human Factors 3
 - IMSE 577 User Interface Des & Analyses 3
 - IMSE 593 Vehicle Package Engineering 3
 - AENG 546 Vehicle Ergonomics II 3

Operations Research & Management Science

- IMSE 505 Optimization 3
- IMSE 514 Multivariate Statistics 3
- IMSE 5205 Eng Risk-Benefit Analysis 3
- IMSE 5215 Program Budget, Cost Est & Con 3
- IMSE 559 System Simulation 3
- IMSE 605 Advanced Optimization 3
- IMSE 606 Advanced Stochastic Processes 3

Integrated Design and Manufacturing Engineering Concentration

Quality Systems Design:
- IMSE 513 Robust Design 3
- IMSE 519 Quan Meth in Quality Engin 3
- IMSE 561 Tot Qual Mgmt and Six Sigma 3
- IMSE 567 Reliability Analysis 3

Advanced Manufacturing & Automation:
- IMSE 502 Computer-Integrated Mfg 3
- IMSE 538 Intelligent Manufacturing 3
- IMSE 5655 Supply Chain Management 3
- IMSE 581 Prod & Oper Engineering II 3

Information Systems Concentration

Information Systems Management:
- IMSE 553 Software Engineering 3
- IMSE 556 Database Systems 3
- IMSE 557 Comp Networks and Comm 3

Enterprise Information Systems:
- IMSE 555 Decision Support/Expert Sys 3
- IMSE 5585 Electronic Commerce 3
- IMSE 564 Meth & Tech in ERP Sys Develop 3
- IMSE 570 Enterprise Information Systems 3
- IMSE 5715 Modeling of Int Info Syst 3
- IMSE 5725 Object Oriented System Design 3
- IMSE 574 IS Based Prod Planning & Cont 3
- IMSE 579 Software Int Mfg & Logis Mgmt 3
Program Management & Product Development

EMGT 580 Mgt of Prod and Proc Design 3
IMSE 515 Fundamentals of Program Mgt 3
IMSE 516 Project Management and Control 3
IMSE 517 Managing Global Programs 3

At least two graduate-level cognate courses for a minimum of six credit hours each in departments other than IMSE must be elected.

The remaining credit hours may be selected with the approval of the graduate advisor.

With the approval of their graduate advisor, students may substitute a master’s thesis for no more than six credit hours of graduate coursework. Students choosing the thesis option are required to elect a minimum of 9 credit hours from the concentration electives, rather than the 12 credit hours stipulated above for the concentration areas. Students must complete 2 of the courses from one of the concentration areas.

Dual Degree, MBA/MSE-Industrial Systems Engineering

The MBA/MSE-Industrial and Systems Engineering has been developed to meet the need for professionals who have expertise in both engineering and management.

It is open to students who have completed a bachelor of science degree in engineering, a physical science, computer science, or applied mathematics.

The program is offered jointly by the College of Business and the College of Engineering and Computer Science, through the Horace H. Rackham School of Graduate Studies. It allows students to receive both the MBA and MSE-ISE simultaneously upon completion of the required 57-66 credit hours.

You may complete the program on campus, on-line, or any combination of the two. (The MBA concentrations are optional, and most require a campus presence.) You may enroll on a full- or part-time basis, but course availability is greatest during the fall and winter semesters.

Admission is rolling, and you may begin the program in September or January. May admission is also usually possible for part-time students. Students must apply and be admitted to the MBA and the MSE-ISE programs separately.

University of Michigan-Dearborn students who have been admitted to the program may take up to 6 graduate business credits during the final semester of their undergraduate program.

Program Goals and Objectives

Master of Business Administration

Goal 1: Students will have an understanding of the core business disciplines and be able to apply this knowledge to global business situations.

Objectives: MBA students will:

1. Demonstrate knowledge of disciplinary concepts, terminology, models, and perspectives.
2. Identify business problems and apply appropriate solutions (problem-finding/problem-solving).
3. Integrate knowledge across disciplinary areas (integrative thinking).
4. Apply knowledge in a global environment.

Goal 2: Students will be effective communicators.

Objectives: MBA students will:

1. Demonstrate an ability to effectively communicate in a manner that is typically required of a business professional.

Goal 3: Students will appreciate the importance of ethical/corporate social responsibility principles.

Objectives: MBA students will:

1. Identify and explain alternative approaches to ethical/corporate social responsibility issues.

Admission Prerequisites

Master of Business Administration

• Mathematics admission prerequisite
• GMAT/GRE admission prerequisite

MSE in Industrial and Systems Engineering

• Completion of a bachelor of science degree in engineering, a physical science, computer science, or applied mathematics
• A course in Probability and Statistics equivalent to IMSE 510
• A course in Operations Research equivalent to IMSE 500

Ph.D. in Industrial and Systems Engineering

The ISE Ph.D. degree requirements include a minimum of 18 credit hours of coursework (beyond Master’s) and 24 credit hours of Ph.D. dissertation. The ISE Ph.D. is comprised of five major milestones, which all students are required to pass successfully prior to graduation:

• Completion of the required coursework
• Passing the Qualifying Examination on the core coursework
• Filing an approved Plan of Study
• Passing the Preliminary Examination and approval of the advancement to candidacy
• Successful oral defense of an approved written dissertation

Course Requirements

The course curriculum consists of three required core courses (9 credit hours) and three concentration courses (9 credit hours) from the curriculum shown below. The course curriculum also requires a minimum of four credit hours of cognate coursework that may have been satisfied by the student’s Master’s Degree program.

Breadth requirement: The breadth requirement is satisfied by student taking three core courses (9 credit hours) in the program.

Depth requirement: Student must select at least three courses (9 credit hours) from the same concentration area.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Core Courses (select three courses, 9 credit hours)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMSE 505</td>
<td>Optimization</td>
<td>3</td>
</tr>
</tbody>
</table>
IMSE 514 Multivariate Statistics 3
IMSE 548 Human Factors 3
IMSE 581 Prod & Oper Engineering II 3

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area 1. Integrated Design and Manufacturing (Select 3 courses)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMSE 511</td>
<td>Design and Analysis of Exp</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 519</td>
<td>Quan Meth in Quality Engin</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 559</td>
<td>System Simulation</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 561</td>
<td>Tot Qual Mgmt and Six Sigma</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 567</td>
<td>Reliability Analysis</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 538</td>
<td>Intelligent Manufacturing</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 5655</td>
<td>Supply Chain Management</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 580</td>
<td>Prod & Oper Engineering I</td>
<td>3</td>
</tr>
<tr>
<td>EMGT 580</td>
<td>Mgt of Prod and Proc Design</td>
<td>3</td>
</tr>
<tr>
<td>AENG 589</td>
<td>Auto Assembly Systems</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 605</td>
<td>Advanced Optimization</td>
<td>3</td>
</tr>
<tr>
<td>Area 2. Operations Research and Decision Science (Select 3 courses)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMSE 5205</td>
<td>Eng Risk-Benefit Analysis</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 5215</td>
<td>Program Budget, Cost Est & Con</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 5655</td>
<td>Supply Chain Management</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 559</td>
<td>System Simulation</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 581</td>
<td>Prod & Oper Engineering II</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 605</td>
<td>Advanced Optimization</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 606</td>
<td>Advanced Stochastic Processes</td>
<td>3</td>
</tr>
<tr>
<td>Area 3. Human Factors and Ergonomics (Select 3 courses)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMSE 511</td>
<td>Design and Analysis of Exp</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 543</td>
<td>Industrial Ergonomics</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 545</td>
<td>Vehicle Ergonomics I</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 546</td>
<td>Safety Engineering</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 577</td>
<td>User Interface Des & Analis</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 593</td>
<td>Vehicle Package Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Cognate Requirements

The student can satisfy ISE Ph.D. program cognate requirement in one of the following ways:

- Completion of at least four hours of approved cognate credits, which must be from outside the IMSE department. The minimum acceptable grade for a cognate course is a B.
- Completion of a University of Michigan Master's degree, which included a cognate component. This coursework must be completed no more than 5 years before admission to the ISE Ph.D. Program.
- Completion of a relevant Master's degree from another university which had a coursework that meets the expectation of the program cognate requirement. This coursework must be completed no more than 5 years before admission to the ISE Ph.D. Program.

Qualifying Examination

By the end of the third semester in the program, a student must pass a written qualifying examination to continue in the program. The Ph.D. Qualifying Examination Committee administers the exam. The Committee is selected by the ISE Ph.D. Program Committee, and consists of three IMSE faculty members and cannot include the research advisor. The purpose of the qualifying examination is to assist both the department and the student in determining whether a student can be expected to perform at a sufficiently high level in advanced course work and research to complete the requirements for the degree. The examinations are given twice a year, once in the fall and once in the winter. The qualifying examination is comprised of the following:

- By the end of the third semester in the program student must take one three-hour written qualifying examination covering the material in three core courses taken in the program. Each one-hour portion of the examination covers material from one of three core courses taken in the program: (1) Optimization (coverage of IMSE 505), (2) Applied Probability and Statistics (coverage of IMSE 514), (3) Production (coverage of IMSE 581), and (4) Ergonomics (coverage of IMSE 548).
- The decision to pass or fail a student is made on the basis of the student attaining a minimum requirement of 75% in each area of the written examination.
- A student who fails the qualifying examination, with the approval of the Ph.D. ISE Program Committee may be allowed only one reexamination, which must be taken at the next scheduled examination date.

Plan of Study

After successfully completing the core courses and passing the qualifying examination, a student is required to develop and submit a Plan of Study that meets at least the minimum requirements for the ISE Ph.D. degree. The student's advisor and the ISE Ph.D. Program Committee must approve the Plan of Study. All courses on the Plan of Study, including cognate courses, must be taken on a letter grade (A/F) basis. Audit courses cannot be included on the Plan of Study. The approved Plan of Study is kept in student's academic file. A student must file the approved Plan of Study by the end of the third academic semester in the program or immediately after passing the qualifying examination to continue in the program.

Preliminary Examination

The Preliminary Examination is an oral examination administered by a student's Dissertation Committee. The primary purpose of this examination is to test the student on his dissertation proposal to determine whether the research objectives are reasonable and achievable. The examination also provides an opportunity for the committee to determine if the student has enough knowledge to pursue research in the proposed subject area and to pass judgment on the suitability of the proposed research as a dissertation topic. The student must be registered for the semester in which he/she takes his/her preliminary examination. The student makes an oral presentation, which is prepared in consultation with the dissertation advisor, in defense of the dissertation proposal. The oral presentation is open to interested faculty and students. The entire dissertation committee must be present during the preliminary examination. A majority vote by the committee and a pass vote by the committee chair are required to pass the examination.

Dissertation Committee

Soon after passing the Qualifying Examination but before the Preliminary Examination, the student and the research advisor form a Dissertation Committee. The research advisor is the chair of the student's Dissertation Committee and works with the student to assemble a committee consisting of appropriate faculty regarding their experience and research
interests. The dissertation committee includes a minimum of four faculty members. The chair or one of the co-chairs of the committee must be a member of the IMSE faculty. One of the members of the committee must be a cognate member. The cognate member must hold at least a .50 appointment in a graduate program, other than IMSE. Depending on the dissertation topic, other members, including a qualified industry member, may be added to the dissertation committee with the approval of the ISE Ph.D. Program Committee. The dissertation committee must be approved by the ISE Ph.D. Program Committee at least six-weeks before the preliminary examination date.

Advancement to Candidacy

Advancement to candidacy is a significant milestone on the way to the Ph.D. A ISE Ph.D. student should achieve candidacy within three years from the time of initial enrollment in the program. Other requirements to advance to candidacy are as follows:

- Completion of the coursework requirements of the program.
- Completion of the cognate requirement of the program.
- Passing of the Qualifying Examination.
- Submitting approved Plan of Study.
- Passing of the Preliminary Examination.
- Posting a minimum cumulative GPA 3.3 out of 4 at the time of applying for the candidacy.

A student should apply for candidacy as soon as he/she meets all the candidacy requirements. If it has been more than three years since the student started the program, a Petition for Modification or Waiver of Regulation asking for an extension for time to candidacy approved by the ISE Ph.D. Program Committee is required.

Dissertation and Dissertation Defense

After candidacy requirements are met the student may proceed with the dissertation research and writing of the dissertation. The dissertation should document the original contributions made by the candidate as a result of independent research. The research work should be of archival quality. In advance of graduation, the dissertation must be approved by all the members of the student’s dissertation committee. To obtain this approval a student must submit a written copy of the dissertation to the dissertation committee and defend the research work at a final oral examination open to other faculty, students, and interested public. Copies of the dissertation, approved by the research advisor, must be provided to the committee at least two weeks before the oral defense. The copies of the dissertation given to the committee should be in the final form and must be formatted to meet the standards of Academic Records and Dissertations. The dissertation committee members are required to submit written evaluation of the student’s dissertation prior to oral defense. The dissertation committee members must be present at the dissertation defense. Since the defense examination includes the formal public presentation of the dissertation research, it will be publicized throughout the college and the university. The time between passing the preliminary examination and the dissertation oral defense is at least 14 weeks.

Publication of Research

The ISE Ph.D. program is designed to give a student comprehensive and in-depth knowledge of the chosen professional field and training in research methods. Therefore, the student is required to prepare at least one paper based on his/her dissertation research for submission to a professional journal prior to scheduling the final oral examination.

Time Limit for Completing a Doctoral Degree

Students are expected to complete the degree within five years of achieving candidacy, but no more than seven years from the date of the first enrollment in the ISE Ph.D. program. Students who have not completed their degree within the seven-year limit may petition the ISE Ph.D. Program Committee for an extension of time to degree with a plan for completion. A student who does not complete the degree after two years of extension may be returned to pre-candidacy status and required to meet candidacy requirements again.

Cognate Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS</td>
<td>Algorithm Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>CIS</td>
<td>Information Retrieval</td>
<td>3</td>
</tr>
<tr>
<td>CIS</td>
<td>Obj-Oriet Prog and Its Applic</td>
<td>3</td>
</tr>
<tr>
<td>CIS</td>
<td>Database Systems</td>
<td>3</td>
</tr>
<tr>
<td>CIS</td>
<td>Web Services</td>
<td>3</td>
</tr>
<tr>
<td>CIS</td>
<td>Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>CIS</td>
<td>Info Vusualatin & Comp Anim</td>
<td>3</td>
</tr>
<tr>
<td>ECE</td>
<td>Mob Dev & Ubigs Comp Sys</td>
<td>3</td>
</tr>
<tr>
<td>ECE</td>
<td>Intelligent Vehicle Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE</td>
<td>Data Mining</td>
<td>3</td>
</tr>
<tr>
<td>ECE</td>
<td>Instr to Pwr Mgmt & Reliability</td>
<td>3</td>
</tr>
<tr>
<td>ECE</td>
<td>Fuzzy Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE</td>
<td>Intelligent Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE</td>
<td>Pat Rec & Neural Netwks</td>
<td>3</td>
</tr>
<tr>
<td>ECE</td>
<td>Advanced Robotics</td>
<td>3</td>
</tr>
<tr>
<td>ECE</td>
<td>Adv Intelligent Sys</td>
<td>3</td>
</tr>
<tr>
<td>ME</td>
<td>Experimental Methods in Design</td>
<td>3</td>
</tr>
<tr>
<td>ME</td>
<td>Sustainable Energy Systems</td>
<td>3</td>
</tr>
<tr>
<td>ME</td>
<td>Reliability Consid in Design</td>
<td>3</td>
</tr>
<tr>
<td>ME</td>
<td>Advanced Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>ME</td>
<td>Mechanical Behavior of Polymer</td>
<td>3</td>
</tr>
<tr>
<td>MATH</td>
<td>Stochastic Processes</td>
<td>3</td>
</tr>
<tr>
<td>MATH</td>
<td>Mathematical Statistics II</td>
<td>3</td>
</tr>
<tr>
<td>MATH</td>
<td>Mathematical Modeling</td>
<td>3</td>
</tr>
<tr>
<td>MATH</td>
<td>Discrete Optimization</td>
<td>3</td>
</tr>
<tr>
<td>MATH</td>
<td>Applied&Algorithmic Graph Thy</td>
<td>3</td>
</tr>
<tr>
<td>MATH</td>
<td>Introduction to Topology</td>
<td>3</td>
</tr>
<tr>
<td>STAT</td>
<td>Data Analysis and Modeling</td>
<td>3</td>
</tr>
<tr>
<td>STAT</td>
<td>Applied Regression Analysis</td>
<td>3</td>
</tr>
<tr>
<td>PSYC</td>
<td>Psychology in the Workplace</td>
<td>3</td>
</tr>
<tr>
<td>PSYC</td>
<td>Psychological Assessment I</td>
<td>4</td>
</tr>
<tr>
<td>PSYC</td>
<td>Sensation and Perception</td>
<td>3</td>
</tr>
<tr>
<td>PSYC</td>
<td>Learning and Memory</td>
<td>3</td>
</tr>
</tbody>
</table>
IMSE 500 Models of Oper Research 3 Credit Hours
The method of mathematical modeling and its application to decision-making problems in organizations. Some widely used models and techniques: linear programming, queuing, inventory, and simulation.
Restriction(s):
Can enroll if Class is Graduate

IMSE 501 Human Factors & Ergonomics 3 Credit Hours
The analysis and prediction of human performance in industrial and other man-machine systems using work sampling, time-motion analysis, synthetic and standard time study, and learning curves, in the design of such systems. Lecture and laboratory. Cannot receive credit for both IMSE 442, and IMSE 501. This class may be scheduled at the same time as the undergraduate course IMSE 442. Graduate students will be required to do additional research paper and/or project.
Prerequisite(s): IMSE 317* or IMSE 510*
Restriction(s):
Can enroll if Class is Post-baccalaureate NCFD or Graduate

IMSE 5010 Fundamentals of Program Mgt 3 Credit Hours
An overview of the project/program management framework and knowledge areas including plan development and execution; management of scope, time, cost, quality, human resource, communications, risk, and procurement. Typical program phases and life cycles observed in defense, construction, automobile, and software industries. Program organizational structures, program management processes, international project management, role of software tools for program management, product development, applications of Lean Product Development techniques, cutting waste and lead time in program management.
Prerequisite(s): IMSE 510
Restriction(s):
Can enroll if Class is Post-baccalaureate NCFD or Graduate
Can enroll if College is Business

IMSE 502 Computer-Integrated Mfg 3 Credit Hours
This course provides basic knowledge of elements in Computer-Integrated Manufacturing Systems, with particular emphasis on Computer-Aided Design (CAD), Computer-Aided Manufacturing (CAM), Computer-Aided Process Planning (CAPP), materials handling, and information flow in manufacturing systems. Hands-on experiments and course projects are required. Two lecture hours and three laboratory hours. Credit cannot be given for both IMSE 483 and IMSE 502. This class may be scheduled at the same time as the undergraduate course IMSE 483. Graduate students will be required to do additional research paper and/or project.
Restriction(s):
Can enroll if Class is Post-baccalaureate NCFD or Graduate

IMSE 503 Computer-Aided M/C & Tool Desg 3 Credit Hours
Study of the fundamentals of machine tool design, cutting tools, metal forming dies, and jig fixtures for practical applications in machining and assembly. Principles of design for manufacture and assembly as applied to tool and machine design. Laboratory exercise and projects are required using computer-aided design software. Two lecture hours and three laboratory hours. Credit cannot be given for both IMSE 484 and IMSE 503. This class may be scheduled at the same time as the undergraduate course IMSE 484. Graduate students will be required to do additional research paper and/or project.
Prerequisite(s): IMSE 382 or ME 381
Restriction(s):
Can enroll if Class is Post-baccalaureate NCFD or Graduate

IMSE 504 Metal Forming Processes 3 Credit Hours
This course focus is on fundamentals of metal forming processes; mechanics of metal forming; formability of manufacture; and economic aspect of the process. Emphasis is placed on analysis of bulk and sheet metal forming processes as applied to practical cases such as automobile manufacturing. Laboratory and course project are required. Credit cannot be given for both IMSE 488 and IMSE 504. This class may be scheduled at the same time as the undergraduate course IMSE 488. Graduate students will be required to do additional research paper and/or project.
Prerequisite(s): IMSE 382 or IMSE 381
Restriction(s):
Can enroll if Class is Post-baccalaureate NCFD or Graduate

IMSE 505 Optimization 3 Credit Hours
Prerequisite(s): IMSE 300 or IMSE 500

IMSE 508 Modeling of Large-Scale Sys 3 Credit Hours
The modern and classical concepts and tools required for modeling, analysis and synthesis of large-scale dynamic systems. Topics include system dynamics, interpretive structural modeling, cross-impact analysis, information theory, theory of hierarchical systems. Emphasis is on constructing models of real world problems taken from urban, industrial, transportation, and health care systems. Students are asked to select problems of interest and present final project reports.
Prerequisite(s): IMSE 505 and IMSE 506

IMSE 510 Probability & Statistical Mod 3 Credit Hours
Prerequisite(s): IMSE 317

IMSE 511 Design and Analysis of Exp 3 Credit Hours
One factor, two factor, and multifactor experiments. Fixed random and mixed models. Blocked confounding, incomplete blocks, factorial experiments, fractional factorial experiments. Introduction to response surface analysis.
Prerequisite(s): IMSE 510

IMSE 512 Taguchi Method of Quality Eng 3 Credit Hours
Quality engineering methodology developed by Genichi Taguchi. Design and analysis of experiments using orthogonal arrays and linear graphs. Accumulation analysis for categorized data. Signal-to-noise ratio as a measure of quality characteristics. Simulation using orthogonal arrays. Parameter design for reducing variability around the target without cost increase. Tolerance design for reducing variability with minimum cost increase. Evaluation and improvement of measurement.
Prerequisite(s): IMSE 510

IMSE 513 Robust Design 3 Credit Hours
Students will learn models and methods in the context of overall strategies to empirically study the design of products and manufacturing processes to reduce variability and to reduce sensitivity to parameter variation. Topics include: process capability studies and measures, basic DOE concepts, factorial experiments, evaluating sources of variation, evolutionary operation and adaptive statistical process control.
Prerequisite(s): IMSE 510
IMSE 514 Multivariate Statistics 3 Credit Hours
Linear statistical models used in simple and multiple regression, and analysis of variation. Principles and techniques of principal component analysis are studied and applied to business and engineering problems using statistical computer software. (YR)
Prerequisite(s): IMSE 510

IMSE 515 Fundamentals of Program Mgt 3 Credit Hours
An overview of the project/program management framework and knowledge areas including plan development and execution, scope management, time management, cost management, quality management, human resource management, communications management, risk management, and procurement management. Typical Program Phases and Life Cycles observed in Defense, Construction, Automobile, and Software Industries. Program Organizational Structures, Program Management Processes, and International Project Management are covered. Role of software tools for Program Management and Product Development are discussed. Applications of Lean Product Development Techniques are considered. Cutting waste and lead time in program management are covered. Case studies are used extensively throughout the course.
Prerequisite(s): IMSE 510
Restriction(s):
Can enroll if Level is Graduate or Professional Development or Rackham

IMSE 516 Project Management and Control 3 Credit Hours
Project Planning, Scheduling, and Controlling functions are discussed in detail including work breakdown structure, CPM and PERT methods, resource allocation and leveling techniques, cost control and minimization, trade-off analysis, learning curves overlapping relationships and concurrent engineering, multiple project execution and optimization. Applications of Lean Techniques in program management are discussed as well as the role of IT in accelerating the product development and reducing the program time. The importance of integrating the Supply Chain in the Product Development is also considered. Case studies and project management software are used throughout the course.
Prerequisite(s): IMSE 510
Restriction(s):
Can enroll if Level is Graduate or Rackham or Professional Development

IMSE 517 Managing Global Programs 3 Credit Hours
This course focuses on some of the central strategic and organizational problems that arise in managing global programs, including cultural conflicts, developing and managing international managers, global and local brands, and organizing to resolve global-local conflicts. The course uses a combination of case studies, problems, lectures and discussion, over a wide variety of companies and countries.
Prerequisite(s): IMSE 515
Restriction(s):
Can enroll if Level is Professional Development or Graduate or Rackham

IMSE 519 Quan Meth in Quality Engin 3 Credit Hours
This course introduces the advanced quantitative and analytical methods used in quality measurement, prediction, control and improvement. The topics include sampling design and plan, control charts, statistical quality control, time series, process capability analysis and quality cost analysis. Quality related topics in robust and tolerance design are also included.
Prerequisite(s): IMSE 510
Restriction(s):
Can enroll if Level is Doctorate or Rackham or Graduate

IMSE 520 Managerial Decision Analysis 3 Credit Hours
Normative decision analysis, decisions, structures, and trees. Utility theory, game theory, and statistical decision theory are introduced. Applications of the theories to management studies in capital investment, bidding, purchasing, and risk analysis are discussed.
Prerequisite(s): IMSE 510

IMSE 525 Eng Risk-Benefit Analysis 3 Credit Hours
Prerequisite(s): IMSE 510
Restriction(s):
Can enroll if Class is Post-baccalaureate NCFD or Graduate
Can enroll if College is Business

IMSE 521 Mfg Cost Estimation & Control 3 Credit Hours
In this course, concepts of strategic costing in product development and manufacturing are introduced. Engineering economy techniques are used in the study of life cycle cost elements. Equipment acquisition and replacement justification methods under risk and uncertainty are presented.
Restriction(s):
Can enroll if Class is Graduate

IMSE 5215 Program Budget, Cost Est & Con 3 Credit Hours
This course focuses on cost estimation and control for program managers and engineers. The course introduces a systematic approach for applying engineering economy techniques in cost estimating, resource planning, cost planning, cost management and control, and the study of life cycle cost elements. An introduction to decisions under risk and uncertainty as well as an introduction to project crashing are also presented.
Prerequisite(s): IMSE 510
Restriction(s):
Can enroll if Class is Post-baccalaureate NCFD or Graduate
Can enroll if Level is Rackham or Professional Development or Graduate
Can enroll if College is Business or Engineering and Computer Science

IMSE 525 Fin & Econ Software Appl 1 Credit Hour
This course applies concepts and techniques of financial management to business and engineering systems case studies. Specifications for some of these systems will be developed utilizing ERP software such as SAP R/3 application development software suite. (YR).
Prerequisite(s): IMSE 570 and IMSE 571
Corequisite(s): EMGT 510
Restriction(s):
Can enroll if Class is Post-baccalaureate NCFD or Post-baccalaureate Cert only or Graduate

IMSE 526 Marketing Software Application 1 Credit Hour
This course applies concepts and techniques of marketing management to business and engineering systems case studies. Specifications for some of these systems will be developed utilizing ERP software such as SAP R/3 application development software suite. (YR).
Prerequisite(s): IMSE 570 and IMSE 571
Corequisite(s): EMGT 535
Restriction(s):
Can enroll if Class is Post-baccalaureate NCFD or Post-baccalaureate Cert only or Graduate
IMSE 5275 Managerial Acct Software Appl 1 Credit Hour
This course applies concepts and techniques of managerial accounting to business and engineering systems case studies. Specifications for some of these systems will be developed utilizing ERP software such as SAP R/3 application development software suite. (YR).
Prerequisite(s): IMSE 570 and IMSE 571
Corequisite(s): EMGT 540
Restriction(s):
Can enroll if Class is Post-baccalaureate NCFD or Post-baccalaureate Cert only or Graduate

IMSE 5285 Human Resource Software Appl 1 Credit Hour
This course applies concepts and techniques of human resource management to business and engineering systems case studies. Specifications for some of these systems will be developed utilizing ERP software such as SAP R/3 application development software. (YR).
Prerequisite(s): IMSE 570 and IMSE 571
Corequisite(s): EMGT 545
Restriction(s):
Can enroll if Class is Post-baccalaureate Cert only or Post-baccalaureate NCFD or Graduate

IMSE 532 Information for Manufacturing 3 Credit Hours
Acquiring and organizing design and manufacturing information (including geometric modeling, group technology, and automated data acquisition), identifying kinds needed, sources, and recipients. Ensuring information quality; establishing criteria for selecting processing modes and media. Designing, installing, commissioning, and operating information-handling systems. Handling information in production systems.
Prerequisite(s): (ECE 539 or ME 588) and IMSE 530
Restriction(s):
Can enroll if Class is Graduate

IMSE 533 Manufacturing Systems 3 Credit Hours
This course introduces methodologies and tools for modeling, design and operations planning of manufacturing systems. Topics include introduction to integrated manufacturing systems, manufacturing system and data modeling methodologies, process planning, group technology, manufacturing system layout, scheduling, push and pull production systems. Industrial case studies are presented and discussed.
Restriction(s):
Can enroll if Class is Graduate

IMSE 534 Human Performance Engin in Mfg 3 Credit Hours
The human as a systems component in an information processing context emphasizing capabilities and limitations. The roles of sensing, perception, decision making, short term memory, long term memory, motivation, expectations and attention. An overview of Learning Organization concepts emphasizing personal mastery, mental models, and team learning. A strategy for design of the user-system interface. Analysis methods including functional analysis, traditional and object-oriented task analysis, and cognitive walk-through. Team design project and individual exercises. Emphasis on experiential learning.
Prerequisite(s): IMSE 530
Restriction(s):
Can enroll if Class is Graduate
Can enroll if College is Engineering and Computer Science

IMSE 536 Machinery Diagnostics 3 Credit Hours
Prerequisite(s): IMSE 510
Restriction(s):
Can enroll if Class is Graduate

IMSE 537 Metal Machining Processes 3 Credit Hours
Detailed study of the principles of conventional and non-traditional metal removing processes, machine tools accuracy, cutting fluids, and cutting tools. The course emphasis will be on the mechanics of metal cutting, machining processes, cutting tool materials and tool geometry, selection of cutting conditions, planning for machining and optimization of manufacturing process. Role of numerical control in improving machining productivity and productivity of manufacturing system.
Prerequisite(s): ME 381 or IMSE 382 or AENG 587

IMSE 538 Intelligent Manufacturing 3 Credit Hours
A comprehensive and integrated approach to topics associated with the science of artificial intelligence and their role in today's manufacturing environments. Design and management issues including information systems in an automated and integrated manufacturing environment.
Prerequisite(s): IMSE 317
Restriction(s):
Can enroll if Class is Graduate

IMSE 543 Industrial Ergonomics 3 Credit Hours
Effective ergonomic interventions in industrial environment enhance productivity, safety and job satisfaction. This course introduces engineers and engineering students how to apply ergonomic principles in designing industrial and manufacturing operations in which people play a significant role, so that human capabilities are maximized, physical fatigue is minimized, and performance is optimized. Case studies and topics emphasize industrial applications.
Prerequisite(s): IMSE 442
Restriction(s):
Can enroll if Class is Post-baccalaureate NCFD or Graduate

IMSE 544 Industrial Biomechanics 3 Credit Hours
This course introduces the mechanical behavior of the musculoskeletal systems as related to physical work activities. Fundamentals of human body mechanics (Kinetic and Kinematic aspects of locomotion, body link systems, muscle strength and performance), muscle fatigue and musculoskeletal injury mechanism are covered with application to design of physical work activities and equipment. (YR).
Prerequisite(s): IMSE 442
Restriction(s):
Can enroll if Class is Post-baccalaureate NCFD or Graduate

IMSE 545 Vehicle Ergonomics I 3 Credit Hours
Prerequisite(s): IMSE 442
Restriction(s):
Can enroll if Class is Graduate
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSE 454</td>
<td>Safety Engineering</td>
<td>3</td>
<td>IMSE 442</td>
</tr>
<tr>
<td>IMSE 458</td>
<td>Human Factors</td>
<td>3</td>
<td>IMSE 442</td>
</tr>
<tr>
<td>IMSE 459</td>
<td>Product Design and Evaluation</td>
<td>3</td>
<td>IMSE 442</td>
</tr>
<tr>
<td>IMSE 550</td>
<td>Data Management</td>
<td>3</td>
<td>IMSE 442</td>
</tr>
<tr>
<td>IMSE 551</td>
<td>Compiler Construction</td>
<td>3</td>
<td>IMSE 550</td>
</tr>
<tr>
<td>IMSE 552</td>
<td>Design/Analysis of Algorithms</td>
<td>3</td>
<td>IMSE 550</td>
</tr>
<tr>
<td>IMSE 553</td>
<td>Software Engineering</td>
<td>3</td>
<td>IMSE 550</td>
</tr>
<tr>
<td>IMSE 554</td>
<td>Management Info Systems</td>
<td>3</td>
<td>IMSE 454</td>
</tr>
<tr>
<td>IMSE 555</td>
<td>Decision Support/Expert Sys</td>
<td>3</td>
<td>IMSE 350</td>
</tr>
<tr>
<td>IMSE 556</td>
<td>Database Systems</td>
<td>3</td>
<td>IMSE 350</td>
</tr>
<tr>
<td>IMSE 557</td>
<td>Comp Networks and Comm</td>
<td>3</td>
<td>IMSE 454</td>
</tr>
<tr>
<td>IMSE 558</td>
<td>Electronic Commerce</td>
<td>3</td>
<td>IMSE 570 and IMSE 571</td>
</tr>
<tr>
<td>IMSE 559</td>
<td>System Simulation</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IMSE 561</td>
<td>Tot Qual Mgmt and Six Sigma</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IMSE 565</td>
<td>Decision Support process and decision support systems, development tools, executive support systems, expert systems and their development processes, expert shells, integration of decision support and expert systems.</td>
<td>3</td>
<td>IMSE 350</td>
</tr>
<tr>
<td>IMSE 566</td>
<td>Database Systems</td>
<td>3</td>
<td>IMSE 350</td>
</tr>
<tr>
<td>IMSE 567</td>
<td>Comp Networks and Comm</td>
<td>3</td>
<td>IMSE 454</td>
</tr>
<tr>
<td>IMSE 568</td>
<td>Electronic Commerce</td>
<td>3</td>
<td>IMSE 570 and IMSE 571</td>
</tr>
<tr>
<td>IMSE 569</td>
<td>System Simulation</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IMSE 571</td>
<td>Tot Qual Mgmt and Six Sigma</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IMSE 570</td>
<td>Decision Support process and decision support systems, development tools, executive support systems, expert systems and their development processes, expert shells, integration of decision support and expert systems.</td>
<td>3</td>
<td>IMSE 350</td>
</tr>
<tr>
<td>IMSE 571</td>
<td>Decision Support process and decision support systems, development tools, executive support systems, expert systems and their development processes, expert shells, integration of decision support and expert systems.</td>
<td>3</td>
<td>IMSE 350</td>
</tr>
</tbody>
</table>
IMSE 564 Meth & Tech in ERP Sys Develop 3 Credit Hours
Students will explore different technology tools and methodologies for building/customizing applications in ERP systems to meet business need of an Enterprise. Extensive software design and development activities will be covered using modular/Object Oriented Programming, Data Modeling, Data Dictionary, Database Access, User Interface, Dialogue Programming, Interactive Report Design using appropriate tools such as, ABAP Workbench, SAP HANA Native Application Development, and SAP Project Implementation phases.
Prerequisite(s): IMSE 570 and (IMSE 556 or CIS 556)
Restriction(s):
Can enroll if Class is Post-baccalaureate NCFD or Post-baccalaureate Cert only or Graduate

IMSE 5655 Supply Chain Management 3 Credit Hours
This course will address theories, concepts, models, methodologies and techniques for managing a supply chain. Topics include supply chain strategy, drivers and metrics of performance, designing global and regional supply chain networks using optimization models, planning demand and supply in a supply chain using forecasting, aggregate planning, and inventory optimization models, designing the transportation systems, pricing, and employing IT systems effectively in supply chains.
Prerequisite(s): IMSE 500 and IMSE 510
Restriction(s):
Can enroll if Class is Post-baccalaureate NCFD or Post-baccalaureate Cert only or Graduate

IMSE 567 Reliability Analysis 3 Credit Hours
Statistics of reliability and life testing. Application of stochastic models for failure based on Poisson and related processes. Use of exponential and extreme value distribution in reliability. Use of Markov process in the areas of equipment reliability, maintenance and availability.
Prerequisite(s): IMSE 510

IMSE 569 Sys Simulation in Auto Engin 3 Credit Hours
The modeling and simulation of discrete, continuous and combined change stochastic systems. Conducting simulation studies using contemporary software such as ARENA and WITNESS. Topics in simulation methodology include random number generation, distribution sampling, input and output analysis. Integration techniques for continuous simulation, application to design of manufacturing and automotive systems.
Prerequisite(s): IMSE 510

IMSE 570 Enterprise Information Systems 3 Credit Hours
The purpose of this course is to provide a foundation for the analysis, design and implementation of enterprise information systems. Topics include systems and organization theories, and information systems planning and evaluation. Students will be also introduced to various systems development life cycle phases of an enterprise information system. Students will acquire an understanding of the flow of information (forecasts, financial, accounting and operational data) within an enterprise and the factors that should be considered in designing an integrated enterprise information system. This includes all systems in the business cycle from revenue forecasts, production planning, inventory management, logistics, manufacturing, accounts payable, sales, accounts receivable, payroll, general ledger and report generation. Specifications for some of these systems will be developed utilizing ERP software such as SAP R/3 application development software suite. (YR).
Restriction(s):
Can enroll if Class is Post-baccalaureate NCFD or Post-baccalaureate Cert only or Graduate

IMSE 5715 Modeling of Int Info Syst 3 Credit Hours
A review of approaches for modeling of integrated information systems. ARIS architecture. Data, control, function, and organization views of an information system. Requirements definition, design specification, and implementation definition of the different views. Process chain diagrams. Management of ERP projects. (YR).
Restriction(s):
Can enroll if Class is Post-baccalaureate NCFD or Post-baccalaureate Cert only or Graduate

IMSE 5725 Object Oriented System Design 3 Credit Hours
Students will be introduced to fundamental concepts and methods of object oriented design and development. Topics that will be covered include object oriented database concepts, data models, schema design (conceptual schemas and physical schemas), query languages, physical storage of objects and indexes on objects, version management, schema evolution and systems issues such as concurrent control and recovery from failure. For application programming, a programming language such as C++ will be used for database design and query language. (YR).
Restriction(s):
Can enroll if Class is Post-baccalaureate Cert only or Post-baccalaureate NCFD or Graduate

IMSE 574 IS Based Prod Planning & Cont 3 Credit Hours
Students will be introduced to theories, models, methods and techniques in demand forecasting, inventory management, capacity planning, production scheduling and management components, in production planning and control for an enterprise. Application systems to model information sharing between these components will be developed using ERP software such as the SAP R/3 application development software suite. (YR).
Prerequisite(s): IMSE 510 and IMSE 570 and IMSE 571
Restriction(s):
Can enroll if Class is Post-baccalaureate Cert only or Post-baccalaureate NCFD or Graduate

IMSE 5755 Bus Proc Int using Entrpr Tech 3 Credit Hours
Full Title: Business Process Integration using Enterprise Technology This course introduces the concept of integration, optimization and configuration of strategic business processes across the enterprise using ERP software technology. Use cases and specifications for some of these systems are introduced in different functional areas, such as Finance, Human Capital Management, Logistics, and Project Systems utilizing ERP software. (F)
Restriction(s):
Can enroll if Level is Rackham or Graduate

IMSE 577 User Interface Des & Anlsis 3 Credit Hours
This course introduces current theory and design techniques concerning how user interfaces (UI) and user experience (UX) should be designed and assessed to be easy to learn and use. Course includes flowing general modules introduction of HCI & UX, Interface/Interaction design strategy, Advanced Issues in HCI, and Evaluation methods.
Prerequisite(s): CIS 553
Restriction(s):
Can enroll if Class is Graduate
Can enroll if Level is Rackham or Doctorate or Graduate
IMSE 579 Software Int Mfg & Logis Mgmt 3 Credit Hours
Students will be introduced to theories, models and techniques in manufacturing, logistics components and their interaction within an enterprise. Topics that will be covered include production/operation analysis and management, capacity planning, and materials planning and inventory management. Application systems to model information sharing between these components will be developed using ERP software such as the SAP R/3 application development suite. (YR).
Prerequisite(s): IMSE 510 and IMSE 570 and (IMSE 571 or IMSE 5715)
Restriction(s):
Can enroll if Class is Post-baccalaureate NCFD or Post-baccalaureate Cert only or Graduate

IMSE 580 Prod & Oper Engineering I 3 Credit Hours
Production and operations management techniques including forecasting, inventory control, MRP, detailed scheduling, aggregate planning, process variability and its effects on throughput and inventory, factory physics principles, and lean methods.
Prerequisite(s): IMSE 510

IMSE 581 Prod & Oper Engineering II 3 Credit Hours
This course addresses the advanced theory and techniques of production and inventory systems. Topics include advanced forecasting methods, production scheduling and lot-sizing, stochastic single-and multi-item inventory systems, and service operations. This course also includes discussions of research articles on production and inventory systems.
Prerequisite(s): IMSE 580 or EMGT 520

IMSE 582 Industrial Controls 3 Credit Hours
This course introduces the principle aspects of computers and their applications in systems control, principles of automation, with emphasis on manufacturing industries. Discussion on the hardware and software associated with this task and other topics such as integrated systems modeling, sensor technologies, digital and analog signal processing and control, and information communication are also included. Laboratory exercises and projects are required. Credit cannot be given for both IMSE 482 and IMSE 5825. This class may be scheduled at the same time as the undergraduate course IMSE 482. Graduate students will be required to do additional research paper and/or project.
Prerequisite(s): ECE 305
Restriction(s):
Can enroll if Class is Post-baccalaureate NCFD or Graduate

IMSE 583 Concurrent Design &Manufacture 3 Credit Hours
This course will cover topics in manufacturing design and analysis with emphasis on the parallel design of product and processes. Topics include principles of design theory, concurrent engineering, group technology, cost estimating, assembly systems, and design for assembly and manufacture. Design projects using computer tools are required on a team-oriented basis.
Prerequisite(s): IMSE 382

IMSE 584 Logistical Systems 3 Credit Hours
Introduction to concepts of physical distribution and logistics management. Quantitative treatment of topics in materials management, transportation, forecasting, warehouse location. Logistical system design techniques which synthesize the above topics in order to design a fundamental system.
Prerequisite(s): IMSE 580

IMSE 585 Material Handling Systems 3 Credit Hours
Studies of material handling methods and equipment, study of techniques used in the analysis and design of material handling systems, study of storage and warehousing systems.
Prerequisite(s): IMSE 500

IMSE 586 Big Data Aanal & Visualiztn 3 Credit Hours
Topics covered include Big Data’s role in engineering, Data Visualization and Infographics Design Principles, Univariate, Bivariate and Multivariate Data Visualization, Visualization Groups, Clustering Distance Measures, Hierarchical, Partition-Based and Fuzzy Clustering, Predictive Analytics using Principal Component Analysis, Multivariate Linear Regression, Discriminant Analysis, and Logistic Regression. Software Tools and Techniques for Visualization and Data Analytics such as Tableau, SAS VA, Pentaho and R. (F)
Prerequisite(s): IMSE 510
Corequisite(s): IMSE 510

IMSE 587 Facilities Planning 3 Credit Hours
Analysis, planning and design of physical facilities utilizing operations research, engineering and economic principles. Synthesis of physical plant equipment and man into an integrated system for either service or manufacturing activities. Design of material handling systems. Students are required to select problems of interest and present design project reports. Credit may not be given for both IMSE 474 and IMSE 587. This class may be scheduled at the same time as the undergraduate course IMSE 474. Graduate students will be required to do additional research paper and/or project.
Prerequisite(s): IMSE 500

IMSE 588 Bldg High Perf Learning Org 3 Credit Hours
The purpose of this course is to develop students’ knowledge and skills to explore and experience how the disciplines of systems thinking, personal mastery, mental models, team learning and shared vision impact on organizational learning and influence management practices for building highly performing organizations.

IMSE 590 Grad Study in Sel Topics I 1 to 3 Credit Hours
Individual or group of selected topics in industrial and systems engineering.
Restriction(s):
Can enroll if Class is Graduate

IMSE 591 Grad Study in Sel Topics II 1 to 3 Credit Hours
Continuation of IMSE 590.
Restriction(s):
Can enroll if Class is Graduate

IMSE 593 Vehicle Package Engineering 3 Credit Hours
Vehicle package specifications related to exterior and interior design reference points, dimensions and curb loadings. Benchmarking package studies, ergonomic tools and design practices used in the automobile industry. Driver positioning considerations; seat height, heel points, hip points, steering wheel location, seat pan, and back angles. Pedal design issues, gear shift positioning. Visibility of instrument panel space. Armrest and console design considerations. Principles and considerations in selecting and location types and characteristics of controls and displays on instrument panels, doors, consoles, and headers. Engine compartment packaging issues. Perception of interior spaciousness and visibility of the road over cowl and hood.
Prerequisite(s): IMSE 442
Restriction(s):
Can enroll if Class is Graduate

IMSE 600 Research in IMSE 1 to 3 Credit Hours
Individual or group study or research in a field of interest to the student. Topics may be chosen from any of the areas of industrial and systems engineering. The student will submit a project report and give an oral presentation at the close of the term.
Restriction(s):
Can enroll if Class is Graduate
IMSE 605 Advanced Optimization 3 Credit Hours
This course will cover selected advanced optimization methods for engineering disciplines and information systems. Topics include nonlinear programming, network optimization, dynamic programming and optimal control. Theories related to optimality and convergence, population-based optimization, etc. will be covered. Students will be expected to write computer program code to implement optimization methodologies.
Prerequisite(s): IMSE 500
Restriction(s):
Can enroll if Class is Graduate
Can enroll if Level is Rackham or Doctorate or Graduate

IMSE 606 Advanced Stochastic Processes 3 Credit Hours
This course introduces the theory and applications of discrete and continuous stochastic processes and models. The topics include Poisson process, renewal theory, discrete-time and continuous-time Markov chains, martingales, random walks, and Brownian motion. Other Markov processes with applications to queueing, simulation, and operations research in manufacturing and service systems will also be covered.
Prerequisite(s): IMSE 510
Restriction(s):
Can enroll if Level is Rackham or Doctorate or Graduate
Can enroll if College is Engineering and Computer Science

IMSE 610 Adv Top Enterprise Info Sys 3 Credit Hours
This course introduces advanced topics in the development, management and improvement of information systems in the context of supporting large enterprises. It covers emerging issues and solutions in modeling, IT infrastructure and technologies, critical enterprise functions, knowledge engineering, security and governance of enterprise information systems. It focuses on the changing requirements posed by the dynamics of their residing environment and information technology.
Prerequisite(s): IMSE 5715
Restriction(s):
Can enroll if Class is Graduate
Can enroll if Level is Graduate or Rackham or Doctorate

IMSE 659 Advanced System Simulation 3 Credit Hours
Simulation with animation packages using contemporary software such as SIMAN/CINEMA or SLAM/TESS. Topics in simulation methodology: random number generation and testing, distribution sampling, validation are reviewed. Emphasis on output analysis, design of simulation experiments, variance reduction techniques, expert systems in simulation.
Prerequisite(s): IMSE 459 and IMSE 559

IMSE 682 Seminar in Comp Proc Contl 3 Credit Hours
Advanced treatment of the design of process control systems with emphasis on the modeling of a process of computer control and the design and analysis of a control strategy. Each student is expected to select a project and design and program the control strategy or support software on a mini-computer.
Prerequisite(s): IMSE 582

IMSE 699 Master's Thesis Project 1 to 6 Credit Hours
Graduate students electing this course, while working under the general supervision of a member of the department faculty, are expected to plan and conduct the work themselves, to submit a thesis for review and approval, and to present an oral defense of the thesis.
Restriction(s):
Can enroll if Class is Graduate

IMSE 980 Ph.D. diss research precand 1 to 9 Credit Hours
Full Title: Ph.D. dissertation research pre-candidate Dissertation research by a pre-candidate student of the Ph.D. in Industrial and Systems Engineering (I&SE) Program conducted under guidance of the faculty advisor. The credits earned in this dissertation research course count towards (fulfil) 24 credit hours of dissertation research requirements of the Ph.D. I&SE program. (F,W,S)
Restriction(s):
Can enroll if Level is Doctorate
Can enroll if Major is Industrial & Systems Engin

IMSE 990 Ph.D. diss research cand 1 to 9 Credit Hours
Full Title: Ph.D. dissertation research candidate Dissertation research by a candidate student of the Ph.D. in Industrial and Systems Engineering Program conducted under guidance of the faculty advisor. (F,W,S)
Restriction(s):
Can enroll if Level is Doctorate
Can enroll if Major is Industrial & Systems Engin

* An asterisk denotes that a course may be taken concurrently.

Frequency of Offering
The following abbreviations are used to denote the frequency of offering: (F) fall term; (W) winter term; (S) summer term; (F, W) fall and winter terms; (YR) once a year; (AY) alternating years; (OC) offered occasionally